| 의안번호  | 제 2 호         |
|-------|---------------|
| 제 출   | 2021. 12. 22. |
| 연 월 일 | (제 20 회)      |

# 『해양수산 연구인프라 중장기 로드맵(안)』

과학기술관계장관회의

| 세        | 之  | ارح | 과학 | 학기 | 술장 | 보 | 통신 | 부정 | 관 | 임  | 혜            | 숙    | 산   | 업 통 | 상 | 자 | 원부 | 부장 | 관 | 문 | 숭 | 욱 |
|----------|----|-----|----|----|----|---|----|----|---|----|--------------|------|-----|-----|---|---|----|----|---|---|---|---|
| <b> </b> | 출  | ^r  | 국  | 토  | 교  | 통 | 부  | 장  | 관 | 노  | 형            | 욱    | 해   | 양   | 수 | 산 | 부  | 장  | 관 | 문 | 성 | 혁 |
| 제출       | 연석 | 월 일 |    |    |    |   |    |    |   | 20 | ) <b>2</b> 1 | L. : | 12. | 22. |   |   |    |    |   |   |   |   |

# 해양수산 연구인프라 중장기 로드맵(안) [요약]

※ [해양수산 연구인프라] 과학기지, 조사선 등 해양수산 연구에 활용되는 연구 시설·장비로, 해양 현장 접근을 위해 필수적이며 거대한 특징

### Ⅰ. 추진배경

- (**현황**) 시설(연구기지 등 84개소), 선박(27척) 등 선진국 대비 80% 수준이며 지속 확대 중이나 중장기 계획에 따른 전략적 구축 및 공동 활용은 미흡
- 한국해양과학기술원 등 출연연, 수과원·조사원 등 기관별로 개별 구축·운영 중 [1억원 이상 장비의 경우 과기부 심의 및 등록(NFEC)]
  - \* 과기부(NFEC)에 등록된 해양 분야 연구장비 중 공동활용은 9.9% 수준('18)
- 구축 장비의 체계적 관리 및 공동활용을 위한 **전문인력**과 제도\* 미흡, 장비 유지 보수비 등 예산도 부족('21. 설문조사 결과)
  - \* 해양수산과학기술육성법에 공동활용 조항이 있으나, 세부 기준·절차 등은 부재

#### [참고] 해양수산 연구인프라 관리운영기관(출연연, 수과원 등 7개) 설문조사('21.5) 결과

#### ◈ 연구 현장의 애로사항

- ① 인프라 관련 전문인력 부족(36%),
- ② 관리운영 예산 부족(24%), 제도 미흡(24%) 등

#### → 개선방향

- **◄(인프라 구축**) ① 전문인력 지원(38%),
  - ② 중장기 계획 마련(31%), ③ 매뉴얼 마련(18%) 등
- **◄ (인프라 운영**) ① 전문인력 지원(34%),
  - ② 유지관리 개선(25%), ③ 공동활용 지원(21%) 등





(국내외사례) 미국, 유럽 등은 중장기 해양연구 인프라 로드맵을
 마련하고, 공유플랫폼 등을 통해 통합 정보를 제공하며 공동 활용



「Critical Infrastructure for Ocean Research and Societal Needs in 2030」

▶ '대형 해양연구 인프라 로드맵', 기후변화, 자연재해, 생태계 보호, 환경보전 등을 위한 해양연구 인프라 확대전략, 정부-대학 연구선박 장비 공유중(UNOLS)



#### 「European Strategy Forum on Research Infrastructures」

▶ '유럽 연구인프라 전략포럼', 글로벌 대형연구를 위한 인큐베이터 역할 수행, 유로오션(Eurocean.org)은 유럽 전체 연구시설 장비 공동활용 프로그램 운영중

- 과기·국토·산업부는 **연구인프라 로드맵**을 수립하고 국토교통 인프라 운영원·산업기술진흥원 등을 통해 **공동활용 플랫폼**(i-Tube\* 등) 운영
  - \* 산업기술 연구장비 공동이용시스템(14,836개 장비 총괄)
  - ➡ 타 분야 대비 장비 수는 부족하나, 현장성·대형성이 높은 해양 수산 연구 인프라 특성 상 체계적 구축 및 공동활용 전략 필요
    - \* '22년 수립예정인 **제2차 해양수산과학기술 육성기본계획('23~'27)**에 반영·연계

### Ⅱ. 정책목표 및 추진전략

# 전환의 시대, 디지털·친환경 산업을 견인하는 해양수산 연구인프라

(Marine R&D Infrastructure Roadmap)

### 【 달성목표 】

- 해양수산 연구인프라 공동활용 활성화(공동 활용율 '20년 10%→'30년 50%)
- 과학기지, 탐사선박 등 전략적 확대(선진국 대비 '20년 80%→'30년 90% 수준)

# [ 추진전략 ]

I. 공동활용 활성화

- 해양수산 연구인프라 지원센터 설치·운영
- 해양수산 연구인프라의 공동활용 확대

Ⅱ. 관리 역량강화

- 정책 전문성 및 신뢰성 제고
- 관련 법제도 정비

Ⅲ. 중장기 구축계획 마련 4차 산업혁명 기반 연구혁신 ■ 해양수산 주요산업의 스마트화 지원

■ 신산업 및 중소기업 지원을 위한 기반 제공

해양환경 및 안전 개선

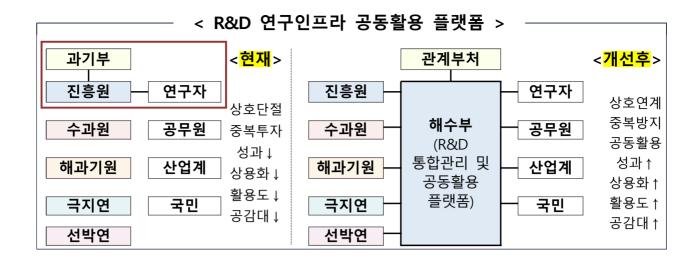
■ 탄소중립과 안전강화 기술연구 환경 구축

해양영토 강화지원

■ 미래 해양영토에 대한 탐사 기반 강화

#### Ⅲ. 주요내용

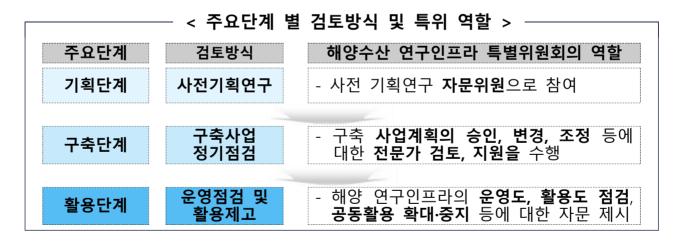
# [전략1] 해양수산 연구인프라의 공동활용 활성화


## ① 해양수산 연구인프라 공동활용센터 설치 운영

- 가칭 '해양수산 연구인프라 공동활용센터'를 신설·운영하여 신규 과학기지, 선박 구축·운영, 기술지원, 공동활용, 교육 등 지원
  - (1단계) KIMST 내 임시조직 구성, 공동활용 사업 시범 수행('22)
  - \* 현재 수행 중인 '아라온호 공동활용위원회' 사무국 역할 외에 출연연, 수과원 등이 개별 운영중인 연구시설장비 수요 통합관리, 일정조정, 이용료 지원 등 수행('22년, 3억원)
  - (2단계) 공모를 통해 지역별·분야별\* 협력기관을 지정하고, 지원 예산, 전문인력 등을 확보하여 정식 운영('23년~)
  - \* 장비 검교정, 정도관리, 유지보수 등 전문인력 운영, 기술 컨설팅, 교육 등 지원

| ◈ 분야별 협 | <b>협력기관 지정·운영</b> (안)                    |         |
|---------|------------------------------------------|---------|
| 분야      | 내용                                       | 지정시기    |
| 물리탐사    | 해양탐사장비 검교정 센터, 멀티빔, 조위계, 해류계 등 정도관리      |         |
| 환경화학    | <b>해양환경장비 검교정 센터</b> , CTD, 시료분석기 등 정도관리 | ′23~′25 |
| 생명공학    | <b>해양생명공학 장비센터</b> , 어체측정기, 유전체분석기 등 관리  |         |
| 민관공유    | <b>산학연 공동활용 센터</b> , 상용화 시제품 제작 및 테스트 등  | 126 127 |
| 표준지원    | 해양수산 기자재 표준화 인증센터, 산업표준(KS) 성능시험 등       | ′26~′27 |
|         |                                          |         |

### ② 해양수산 연구시설 공동활용 기반 마련


- 출연연, 수과원 등에 **분산된 과학기지, 조사선박 등 정보**를 통합하고 플랫폼·조직·제도 등을 정비하여 공동활용을 체계적 확대
  - (플랫폼) 출연연, 수과원 등의 시설·장비 정보를 통합 관리하고 공유·임대 등이 원스톱으로 이뤄지는 싱글윈도우 플랫폼 구축('21~'23)
  - \* 출연연, 국립연 등의 연구장비 목록 의무입력, 연구자뿐 아니라 기업, 국민 서비스
  - (지원사업) 극지, 대양탐사 등 대형인프라가 필수인 분야에 기업, 대학이 참여할 수 있도록 이용료 지원, 부처간 협력사업도 확대
  - \* 조사선 유류비, 장비 보수비 등 일부 지원, 극지 Open Innovation 학술과제 확대



# [전략2] 해양수산 연구인프라 관리역량 강화

#### □ 정책 전문성 및 신뢰성 제고

- 연구인프라 구축·운영 관련 정책 결정 및 기획·구축·활용 단계별 검토 등을 위해 전문가 중심의 해양수산 연구인프라 특위 신설('22.上)
  - \* 해양수산과학기술육성법에 따른 해양수산과학기술위원회 내 특위 구성 가능



### ② 관련 법제도 정비

○ 연구시설·장비의 구축, 공동활용, 절차 등과 관련한 표준지침을 제정·시행할 수 있도록 해양수산과학기술육성법 일부 개정

제11조(기술개발 성과의 활용촉진) (현행) ② 해양수산과학기술 연구개발사업의 결과물인 연구 장비・시설을 소유하고 있는 기관은 무상으로 또는 실비(實費)의 사용료를 받는 것을 조건으로 해양수산 관련 분야 연구자에게 해당 연구 장비・시설을 활용하도록 할 수 있다.

(신설) ③ 제2항에 따른 연구개발 장비·시설의 공동활용 대상, 절차, 사용료 책정기준, 관리운영 지원 등에 관한 세부 사항은 해양수산부령으로 정한다.

- 연구시설·장비 관리·운영·공동활용 업무 위임(KIMST) 근거를 마련 (시행령)하고 세부 절차\*를 고시할 수 있도록 신설(시행규칙)
  - \* 공동활용 대상, 범위, 신청·승인, 사용료 기준, **인프라 운영 주체 분리지정** 등

#### ◈ 조사선박, 시험수조 등 인프라 소유-운영권 분리(안) <<mark>현행</mark>> <개선후> ※ 구축 협약시 분리여부 결정

| 소유 | 운영       | 활용-연구    |
|----|----------|----------|
| Ę  | 출연연 등 단독 | <u> </u> |

| '   L T | <i>/</i> \ | E-1-11 E-0       |
|---------|------------|------------------|
| 소유      | 운영-위탁      | 활용-연구            |
| 국가      | 출연연 등      | 출연연,<br>대학, 기업 등 |

# [전략3] 해양수산 연구인프라 중장기 구축계획 마련

- ◈ 한국형 뉴딜, 탄소중립, 미래 해양영토 경쟁 등에 체계적으로 대응하기 위해 중장기적 관점의 해양수산 연구 인프라 구축계획 마련
  - \* 전통적인 **연구시설·장비 보강**과 함께 4차 산업혁명 기반 **디지털트윈 등 가상 인프라** 확대

### ① 해양수산 주요산업의 스마트화 지원

- (동향) 스마트 항만물류, 스마트 수산양식, 자율운항 선박 등 전세계가 해양수산 산업 스마트화 분야에서 치열하게 경쟁 중
  - \* 싱가포르, 중국 등은 완전자동화 터미널 항만 개발 및 확장중, 노르웨이 등은 수산양식 자동화 시스템을 통해 사료 공급 및 수질 어류 상태 관리 기술 고도화중
- ⇒ (추진방향) 스마트 항만·양식, 자율운항선박 실증센터 등 핵심 원천기술 확보, 상용화 지원을 위한 실·검증 인프라 적기 확보
  - \* 시장·기술 변화에 대응, 신속 실검증이 가능한 **디지털 트윈, Open Lab** 등도 확대

## ② 신산업 및 중소기업 지원을 위한 기반 제공

- (동향) 해양바이오, 해양장비 등 해양수산 신산업 시장이 '30년까지 빠르게 성장할 것으로 예상(시장규모 2.9배, 연평균성장률 8.5%)\*
  - \* Douglas-Westwood('17), GIA('15), Global Wellness Institute('17) 등 발표
- ⇒ (**추진방향**) 해양수산 신산업 성장과 자생하는 민간산업 생태계 조성을 위해 **산학연 협력센터, 해양장비 공동활용** 등 지원
  - \* 해양과학기술 산·학·연 협력센터, 해양장비공동활용시설(Marine Core Facility) 등

### ③ 해양수산 탄소중립과 안전강화 기술연구 환경 구축

- (**동향**) 선진국들은 탄소중립, 해양환경 규제 강화<sup>\*</sup> 등에 대응하여 **친환경선박, 해양에너지 시장 선점**을 위해 핵심기술 개발 추진 중
  - \* 선박연료 황 함유량 3.5%→0.5%('20년), 온실가스 배출량 '08년 대비 50% 이상 감축(~'50)
- ⇒ (추진방향) 친환경선박 육해상 테스트베드, 수소 등 해양에너지 실해역 시험장 등 상용화 지원, 해양방사능·안전 연구인프라 확보

#### ④ 미래 해양영토에 대한 탐사 기반 강화

- (**동향**) 중국, 일본 등 주변국들은 자국의 해양영토 확대를 위해 대양, 극지 등에서 **자원탐사 및 과학구조물 설치** 활동 확대 중
  - \* 중국이 한·중 EEZ 가상중간선을 넘어선 우리측 해역에 대형 해양관측부이를 설치('19)
- ⇒ (추진방향) 선진국들의 공격적인 해양탐사 등에 대응해 **동해 해양** 과학기지, 제2쇄빙선, 해양슈퍼컴 등 전략형 탐사 장비·시설 확충

| 그ㅂ                | 현재                                     | 중장기 구                                                 | 축계획(요약)                                          |
|-------------------|----------------------------------------|-------------------------------------------------------|--------------------------------------------------|
| 구분                | 언세                                     | 중기                                                    | 장기                                               |
|                   | ~'21                                   | ~'26                                                  | ~′31                                             |
| 산업혁신              | 기초 연구 시설                               | 실증 검증 인프라                                             | 디지털 트윈/Open Lab                                  |
| 스마트<br>해울항만<br>불류 | ■ 항만 컨테이너 자동<br>검색기 연구시설               | <ul><li>■ 항만자동화 테스트베드</li><li>■ 자율운항선박 실증센터</li></ul> | ■ 선박해양 디지털 트윈센터                                  |
| 수산양식<br>식품        | ■ 양식육종 연구시설,<br>수산자원조사선 등              | ■ 스마트 양식 테스트베드                                        | ■ 수산식품 스마트 가공 및 유통<br>연구 센터(Open Lab)            |
| 기업지원              | ■ 해양관측장비<br>검교정 센터                     | ■ 해양연구장비 공동활용 시설<br>(Core-Facility)                   | ■ 해양과학기술 산학연 협력센터                                |
| 환경안전              | 실험 연구수조                                | 해상 실증 인프라                                             | 인프라 Scale-Up                                     |
| 친환경<br>선박         | ■ 해양공학수조<br>■ 심해·빙해수조                  | ■ 선박용 대용량 전원공급 시스템<br>안전평가 Lab                        | ■ 친환경 선박 대체연료 육상·<br>해상 테스트베드                    |
| 해양<br>에너지         | ■ 파력에너지 실해역<br>시험장                     | ■ 바이오 수소 생산시설 고도화                                     | ■ 해양그린수소 생산기술, 수소<br>항만, 벙커링 핵심기술 인프라            |
| 영토강화              | 필수 연구 기반                               | 연구인프라 보완                                              | 전략적 인프라 운영                                       |
| 해양영토              | ■ 이어도·소청초·가거초<br>과학기지<br>■ 천리안위성 2호    | ■ 울릉·독도 해양조사선<br>■ 황해 중부 부이 관측망                       | ■ 해양예보 슈퍼컴 인프라<br>■ 동해 해양과학기지                    |
| 극지대양              | ■ 남북극 기지<br>■ 아라온호, 이사부호<br>■ 심해 잠수정 등 | ■ 제2쇄빙연구선<br>■ 해양극한지 모사 배양 및<br>활용 스테이션               | ■ 극지관측용 큐브위성, 연구센터<br>■ 생명자원 전용조사선<br>■ 차세대 빙해수조 |

Ⅳ. **향후계획**: 공동활용 플랫폼·조직·제도 정비, 연차별 인프라 구축

| 과학: | 기술관        | 계장관회의   |
|-----|------------|---------|
| 회   | ᆉ          | 2021-20 |
| ᆁ   | <b>∕</b> r | (제2호)   |

# 해양수산 연구인프라 중장기 로드맵

(Marine R&D Infrastructure Roadmap)

2021. 12. 22.



# 목 차

| │. 추진배경1                     |
|------------------------------|
| □. 국내외 선진동향 및 시사점 4          |
| Ⅲ. 그간의 추진경과 및 기본방향 ······· 7 |
| □ ▷ 전책목표 및 추진전략 8            |
| ∨. 전략별 추진과제 ······ 10        |
| VI. 기대효과 및 향후계획 ······· 22   |

#### 추진배경 Ī

### ① 해양수산 연구인프라의 개념 및 특징

- □ 해양과학기지, 대형조사선, 위성 등 해양수산 연구분야에 활용되는 연구시설·장비로 현장접근을 위해 필수적이며 거대한 특징
  - \* 연구시설장비란? 연구개발 활동에 직접적으로 사용되며. 연구개발에 필요한 기능과 환경을 구현한 시설, 연구장비를 총칭(국가연구개발 시설장비의 관리 등에 관한 표준지침)









<과학기지>

<연구탐사선>

<해양관측위성>

<해양시험수조>

- (**현장성**) 해양연구에 필요한 데이터, 시료 등의 확보를 위해 극한지, 심해저 등 열악한 해양환경에 접근하기 위해 필수적으로 필요
  - \* 극지연구(과학기지 및 쇄빙선), 대양연구(이사부호), 심해저연구(잠수정) 등
- (**대형성**) 해양환경 특성(고염, 고압, 저온 등)으로 연구결과 검증을 위해 대형설비 요구, 시설구축에 막대한 비용과 고난이도 기술이 필요
  - \* 심해공학수조(486억원), 아라온호(1,080억원), 장보고 과학기지(1,047억원) 등

## ② 해양수산 연구인프라의 중요성

- □ (경제적) 조선·해양플랜트 등 산업 육성 및 신산업 창출 등을 통한 경제 활성화, 미래유망 시장 선점을 위해 핵심 도구
  - \* 공학수조(해양플랜트 산업), LNG 친환경 선박 육해상 테스트베드(조선산업) 등
- □ (국가적) 극지, 이어도 등 미래 해양영토 확보를 위한 포석이 되며, 국민의 생명·재산을 보호하기 위한 수색·구조 기지로도 활용
  - \* 한-중 EEZ 중첩 해역에 이어도과학기지 설치('O3), 아라온호의 조난선박 구조활동 등

#### ③ 그 간의 성과 및 한계점

- □ (성과) 선진 수준의 해양수산 과학기술 역량 확보를 위해 연구 인프라(시설 84개소, 선박 27척, 장비 1,882대 등)를 꾸준히 확대 구축중
- 미국, 유럽 등 선진국들에 비해 80% 수준으로 다소 부족하나, 이사부호(19), 천리안 위성 2호(20), 제2쇄빙선(21 예타통과) 등 지속 확대중

| < 해양수산 연구인프라 현황 | < | 해양수산 | 연구인프라 | 현황 | > |
|-----------------|---|------|-------|----|---|
|-----------------|---|------|-------|----|---|

| 구 분              | 연구시설                | 선박  | 연구장비     | 선진국 /                        | 니설현홍  | <b>)</b> (참고) |
|------------------|---------------------|-----|----------|------------------------------|-------|---------------|
| 총 합계             | 84개소                | 27척 | 1,882개   | 국가                           | 시설    | 선박            |
| 한국해양과학기술원        | 국내 5개동              | 5척  | 680개     | 영국                           | 113   | 47            |
| 극지연구소            | 국내 1개동,<br>국외 3개 기지 | 1척  | 426개     | 미국                           | 106   | 23            |
| 선박해양플랜트연구소       | 국내 11개동             | -   | <br>251개 | 프랑스                          | 117   | 25            |
| 국립수산과학원          | 59개동                | 13척 | 516개     | 이탈리아                         | 108   | 21            |
| 해양조사원, 자원관(비R&D) | 국내 3개 기지<br>센터 등 2개 | 8척  | 9개       | * 분류기준이<br>한계는 있으<br>시설 수로 t | 나, 해당 | 국가 선박,        |

- \* R&D 예산 3천만원 이상의 연구 시설·장비('21.9. 기관별 조사결과)
- □ (**한계**) 해양수산 연구환경의 특성을 반영한 <u>중장기 구축 전략이 부재</u>, 구축된 인프라의 체계적 관리운영 및 공동활용이 부족한 실정
  - (전략부재) 정부차원 계획 없이, 대다수 외부 요인에 의해 Top-Down 형태로 기획되고, 충분한 기술적 검토와 공감대 형성 없이 추진
    - \* 이어도호, 극지환경재현센터 등 연구시설 구축사업 부실 징계요구('21.8. 국회)
  - 출연연, 수과원 등 기관별 개별 인프라 구축·운영, **일관된 정책방향** 부재로 인프라 간 역할 검토·중복예방·연계 등에 한계
  - (활용부족) 막대한 비용과 시간을 투입해 구축후 실제 운영율이나 공동활용은 10% 수준으로 사장되는 유휴 시설·장비가 다수 존재
    - \* 과기부에 등록된 해양 분야 연구장비 중 공동활용은 9.9% 수준(NFEC, '18)
  - 인프라 구축후 운영 및 공동활용을 위한 전문인력과 제도\* 미흡, 조사선 유류비, 장비 유지보수비 등 예산도 부족('21. 설문조사결과)
    - \* 해양수산과학기술육성법에 공동활용 조항이 있으나, 세부 기준·절차 등 부재

# [참고] 해양수산 연구인프라 운영 현황 및 로드맵 관련 현장 의견수렴 및 설문조사 결과

■ **기간/수행기관**: `21.05 ~ `21.06 (2개월) / 해양수산과학기술진흥원

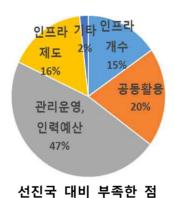
■ **대상** : 해양수산 연구인프라 관리운영 기관(7개)

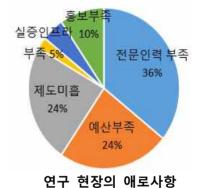
■ 조사방식 : (1차) 각 기관 대상 설문조사, (2차) 연구자, 전문가 대상 심층조사

■ 조사내용 : 해양수산 연구인프라 관련 제도 개선사항, 관리강화 필요성 및 현장

애로사항에 대한 전문가 의견수렴 및 설문

#### □ 주요 문제점


#### ◈ 선진국 대비 부족한 점


① 관리운영 인력, 예산(47%), ② 공동활용 체계(20%), ③ 인프라 관련 제도(16%) 등

#### ◈ 연구 현장의 애로사항

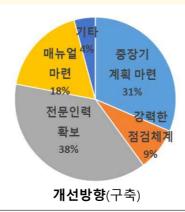
① 인프라 관련 전문인력 부족(36%), ② 예산부족(24%), 제도미흡(24%) 등

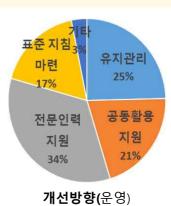






#### □ 개선방향


#### ◈ 인프라 구축시 개선할 점


- ① 전문인력 지원(38%), ② 중장기 계획마련(31%), ③ 매뉴얼 마련(18%) 등

#### ◈ 인프라 운영시 개선할 점

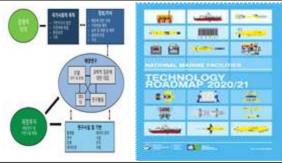
- ① 전문인력 지원(34%), ② 유지관리 개선(25%), ③ 공동활용 지원(21%) 등







# Ⅱ 국내외 선진동향 및 시사점


## ① 해외 선진국 현황

- □ (미국) 미연방연구재단(NRC)은 2030년까지 해양연구에 필수적인 연구 시설 로드맵\*을 마련, 대형연구시설 프로그램(MREFC)을 통해 구축중
  - \* 지역연구선, 해양관측 모바일 시스템, 고정플랫폼, 샘플링시스템, 데이터 센서 등
- 정부-대학 해양연구실 시스템(UNOLS)는 대학과 연구소가 보유한 선박, 장비에 대한 실시간 스케줄 공유, 위치, 온라인 예약 등을 제공
- □ (중·일) 국가과학기술 기본계획에 유무인 잠수정, 차세대 쇄빙선, 해양재생에너지 등 핵심 해양연구 인프라를 포함하여 구축 확대중
- 특히, 일본은 '첨단연구 인프라 공유 추진 프로젝트'를 통하여 첨단 측정 및 분석장비 중심으로 분야별 공유 플랫폼\*을 구축 운영중
  - \* 풍력 및 흐름 실험 플랫폼, 초미세 현미경 플랫폼, 슈퍼컴퓨터 분석플랫폼 등
- □ (유럽) 영국, 노르웨이 등은 각각 '20, '21년에 국가해양시설 기술 로드맵을 수립, 22여개 시설장비 현황과 개선방향, 미래목표 제시
  - \* 해양기술연구소, 해양로봇, 해양연구선박, 수중글라이더, 해양대기 모니터링 시스템 등
- 유로오션(Eurocean.org)은 유럽전체 해양연구시설 및 장비 검색, 연구 선박의 실시간 위치(AIS) 정보를 제공하며, 공동활용 프로그램 운용

#### < 해외 연구 인프라 로드맵 및 공유사례 >

# 해양 연구인프라 로드맵(미국, 영국)

### 연구인프라 공동활용 프로그램(미국, 유럽)





## [참고] 해양수산 연구인프라 관련 해외 사례

< 선진국 해양수산 연구인프라 로드맵 현황 >



#### Critical Infrastructure for Ocean Research and Societal Needs in 2030

▶ '대형 해양연구 인프라 로드맵', 기후변화, 자연재해, 생태계 보호, 환경보전 등을 위한 **정보지식 확보 차원**에서 해양연구 인프라 확대전략 제시



(영국)

#### NATIONAL MARINE FACILITIES, TECHNOLOGY ROADMAP 2020/21

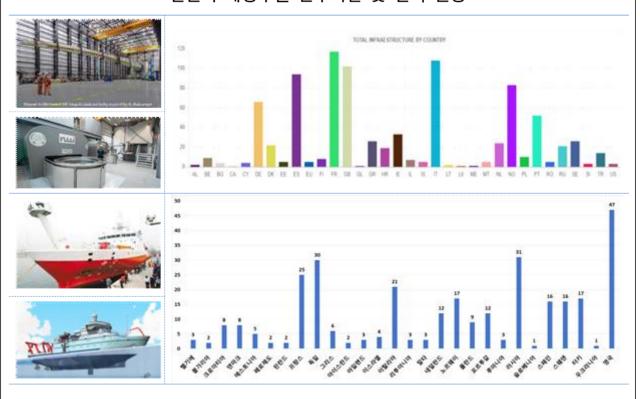
▶ '**국가해양시설 및 기술 로드맵** 2020/2021', 해양장비인프라'의 중요성과 방향성 제시, 첨단 해양과학연구선 확보, 효율적 연구시설 배치조정, 파트너쉽 등을 통한 연구결과의 통합, 전문성 확보



#### Feuropean Strategy Forum on Research Infrastructures

▶ '유럽 연구인프라 전략포럼', 글로벌 대형연구의 인큐베이터 역할 수행, 인프라 통합관리 및 공유, 지속적인 성과모니터링을 추진




#### 「일본 해양기본계획」



(일본)

▶ **해양의 개발이용**을 통한 **경제성장, 자연재해 대응 및 환경보호, 미지탐사**를 위한 주요 연구인프라 제시 - 차세대 해양자원 조사시스템, 해양에너지 및 광물자원 생산, 환경영향평가 관리시스템, 극지심해 탐사장비 등 제시

< 선진국 해양수산 연구시설 및 선박 현황 >



#### 2 국내 현황

- □ (과기) 전국 136개 대형연구시설, 450여개 연구기반시설에 대한 종합 관리를 위해 "연구시설 전주기 관리체계 구축 방안"을 수립('19)
  - \* 대형연구시설(50억 이상 국가연구시설), 연구기반시설(대학, 국공립연의 연구시설)
- 연구시설 중기 구축 로드맵\* 마련, 신규 대형연구시설에 대한 위탁운영기관 지정, 구축후 성과관리 체계를 마련하여 추진중
  - \* 과학기술기본법에 따른 연구시설 확충계획(3년 주기), 갱신(매년), 투자방향 설정중
- □ (국토) 국토교통 분야 1~2단계 대형실험시설 구축 사업으로 **전국** 12개\* 시설 구축('04~'18), "국토교통 연구인프라 종합로드맵" 수립('17)
  - \* 주택성능연구개발센터, 건설재료실험센터, 도로실증센터, 지진방재연구센터 등
- 국토교통 인프라 운영원('09, 설립)을 통해 연구 인프라 공동활용, 전문인력 및 기술 지원, 장비성능 개선 등을 체계적으로 수행중
- □ (산업) 산업기술진흥원이 총 14,836개의 산업기술 연구장비 관리를 총괄하며, 공동활용 플랫폼인 i-Tube를 통해 공동활용 지원중
- **민간 산업분야의 기술개발을 지원**하기 위해 산학연이 공동으로 활용할 수 있는 **산업기술기반 조성 사업 수행중**("11~)
  - \* 전국 244개 산업기술개발 장비지원센터 지원 및 7,138대의 장비를 도입('11~'20)



◆ (시사점) <u>타 분야 대비 시설, 장비 수는 부족</u>하나, 현장성, 대형성이 큰 해양수산 연구 인프라 특성상 선진국과 같은 공동활용, 체계적 구축전략 필요

#### 그간의 추진경과 및 기본방향 Ш

#### □ 추진경과

- □ 국내외 동향과 정부 주요 정책 어젠다 등을 고려하여 향후 10년간 추진해야 할 해양수산 연구 인프라 구축·활용 전략 도출
- 해양수산 연구기관, 기업, 대학 대상 수요·설문조사("21.3~7)
  - \* 해양수산 분야 종사자 200여명 참여, 연구 인프라 신규 수요 45개 접수
- 전문가 평가\*를 통해 **우선순위 도출, 추진과제 정립**('21.8~9)
  - \* 국가정책 부합성, 과학기술적·경제사회적 효과, 차별성, 수요자 구체성 등 지표평가
- □ 관계부처, 정책수요자 등 의견수렴 및 보완('21.10)

#### ② 정책의 기본방향

- □ 그간 산발적, 분절적으로 구축 및 운영되어 오던 해양수산 연구 인프라를 정책 수요 기반으로 체계적 구축 및 공동활용 강화
- ① 한국형 뉴딜, 탄소중립, 코로나 등 국내외 정세에 대응하기 위해 중장기적 관점의 해양수산 연구인프라 구축 로드맵 마련
- \* 전통적인 시설인프라 보강과 함께 4차 산업혁명 기반 디지털트윈, 메타버스 등 인프라 확대
- ② 유사시설의 중복구축·유휴시설 방지 등 재정투자의 효율성 확보, 국가, 출연연, 대학 등이 보유한 해양수산 연구 인프라 공동활용 확대
- \* '22년 수립예정인『제2차 해양수산과학기술육성 기본계획('23~'27)』에 반영, 정책연계

## < 정책·수요기반 해양수산 연구인프라 체계적 구축 및 공동활용 강화 >

- 기관 개별 활용
- 인력, 제도 부족
- 공동활용 확대
- 유지관리 한계
  □ 관리운영 체계화
  - 전문지원 기관
- 투자전략 부재
- 중복 투자·낭비 🖒 **효율적 투자**
- 단순 시설인프라
- 중장기 로드맵
  - - 디지털트윈 등

# 전환의 시대, 디지털·친환경 산업을 견인하는 해양수산 연구인프라

(Marine R&D Infrastructure Roadmap)

## 【 달성목표 】

- 해양수산 연구인프라 공동활용 활성화(공동 활용율 '20년 10%→'30년 50%)
- 해양수산 연구인프라의 전략적 확대(선진국 대비 '20년 80%→'30년 90%)

## 【 추진전략 】

- I. 공동활용 활성화
- □ 해양수산 연구인프라의 공동활용 확대
- [2] 해양수산 연구인프라 지원센터 설치·운영
- Ⅱ. 관리 역량강화
- □ 정책 전문성 및 신뢰성 제고
- ② 관련 법제도 정비

# Ⅲ. 중장기

구축 계획

4차 산업혁명 기반 연구혁신

- □ 해양수산 주요산업의 스마트화 지원
- [2] 신산업 및 중소기업 지원을 위한 기반 제공

# 해양환경 및 안전 개선

③ 탄소중립과 안전강화 기술연구 환경 구축

해양영토 강화지원

4 미래 해양영토에 대한 탐사 기반 강화



# Ⅴ 전략별 추진과제

# [전략1] 해양수산 연구인프라의 공동활용 활성화

## ① 해양수산 연구시설 공동활용 기반 마련

● 現 기관별 분산된 해양수산 연구 인프라 정보를 통합 관리하는 한편,관련 플랫폼·사업·조직·제도 등을 정비하여 공동활용을 체계적 확대



- □ (플랫폼) 각 기관의 시설장비 정보가 하나의 시스템으로 관리되고, 공유·임대 등이 원스톱으로 이뤄지는 싱글윈도우 플랫폼 구축
- 국가, 출연연, 대학, 기업 등이 보유한 유휴 연구 시설, 장비 공동활용
  및 대국민 서비스 확대, 과기부 등 관계부처와 공동활용도 확대
  - \* 해수부 및 산하 국공립 연구기관, 출연연을 시작으로 시스템 및 절차 안정화 후 대학, 기업, 지자체 등으로 확대→**국가 연구과제통합시스템(IRIS) 등과 연계 구축**
- \*\* 과기부-극지 기초연구에 기지 등 활용 / 산업부-친환경·자율운항선박 실증 활용
- □ (지원사업) 극지, 대양탐사 등 대형선박, 기지가 필수인 분야에 기업, 대학이 참여할 수 있도록 이용료 지원, 자유공모 사업 확대
- 조사선, 수조 등 대형시설 이용료 지원('22년 3억원), 연구장비 공유 불용장비 중소기업 이전, 극지·대양 Open Innovation 학술과제 확대 등

## ② 해양수산 연구인프라 공동활용센터 설치운영

- ◆ (가칭) '해양수산 연구인프라 공동활용센터' 운영을 통해 연구 인프라 구축 및 관리운영, 기술지원, 공동활용, 교육 등을 지원
  - ※ 미국, 유럽 등 선진국 사례와 과기부, 산업부, 국토부 등 타부처 사례 참조
- □ (운영방안) 사업추진 개선방안 적용 단계에 맞추어 1단계는 임시 조직 구성·운영, 2단계부터 수행기관을 선정하여 본격 운영('23년~)
- □ **1단계**('22, 시범운영) : 해양수산과학기술진흥원 내 임시 조직 구성, 인프라 공동활용 사업 시범수행('22.), 연구시설목록 및 수요 통합관리, 일정조정 등
- □ **2단계**('23~, 안정화) : 지원센터의 **역할** 및 **지원요건** 등을 제시하고 기관 공모 등을 통해 지역별·분야별 **협력기관** 선정, **업무 수행** 
  - ※ '22년은 자체 인력·예산(3억원)으로 시범운영, '23년 별도 조직·예산 확보 추진

#### ◈ 분야별 협력기관 지정·운영(안)

| 분야   | 내용                                  | 지정시기    |
|------|-------------------------------------|---------|
| 물리탐사 | 해양탐사장비 검교정 센터, 멀티빔, 조위계, 해류계 등 정도관리 |         |
| 화학분석 | 해양환경장비 검교정 센터, CTD, 시료분석기 등 정도관리    | ′23~′25 |
| 생물공학 | 해양생명공학 장비센터, 클로로필 분석기 등 정도관리        |         |
| 공동활용 | 산학연 공동활용 센터, 상용화 시제품 제작 및 테스트 등     | 126 127 |
| 표준지원 | 해양수산 기자재 표준화 인증센터, 산업표준(KS) 성능시험    | ′26~′27 |

- □ (주요업무) 공동활용 시설운영 지원, 검교정 등 전문인력, 컨설팅·교육 등 총괄적인 해양수산 연구인프라 공동활용 실무 수행
- (제도운영) 공동활용 인프라 운영 스케줄 관리, 전문인력 및 기술 지원,
  구축 및 운영 사업의 경험·노하우 메뉴얼화, 공동활용 협의체 운영
- (인력지원) 각 기관의 연구인프라 신뢰성 유지를 위한 장비, 센서의 검교정, 정도관리, 유지보수 등을 지원 전문인력 확보·운영
- (교육컨설팅) 사업단 별 관리 수준을 측정하고 예산·진도·리스크 관리 등 사업관리 역량 향상을 위한 맞춤형 교육·컨설팅 지원
  - \* 사업 초기단계에는 관리조직구성, 매뉴얼 작성 등 조기 사업관리체계 구축 지원

# [전략2] 해양수산 연구인프라 관리역량 강화

## □ 정책 전문성 및 신뢰성 제고

- ♦ 해양수산 연구인프라 구축·운영에 관한 정책결정 및 단계별 검토 지원을 위해 해양수산과학기술 연구 인프라 특별위원회 신설('22.上)
  ※ 해양수산과학기술육성법 시행령 제5조에 따라 위원회내에 특위 구성가능
- □ **(구성)** 해양수산 인프라 **구축**(엔지니어)·**활용**(분야별 연구자\*) 관련 전문가 및 **사업관리**(Project Management) 전문가 중심 10인 내외 구성
  - \* 기술분야 별 전문위원회 위원 참여를 통한 연계 및 전문성 제고
- □ (기능) 과학기지, 조사선박 등 구축 및 운영 관련 정책·계획 검토, 주기별 주요단계 검토, 타부처 연구 인프라 사업과의 협력지원 등
- (정책검토) 해양수산 연구인프라 관련 정책·중장기 계획 등의 국가·해양수산 과학기술위원회 등 상위위원회 심의 전 사전검토
- (사업별 검토) 사전 기획연구(기획단계), 사업계획 승인·변경(구축단계), 운영 및 공동활용 활성화(활용단계) 등 인프라 주요단계 평가·검토

|      | < 주요단계 별 검토방식 및 특위 역할 > |                                                                   |  |
|------|-------------------------|-------------------------------------------------------------------|--|
| 주요단계 | 검토방식                    | 해양수산 연구인프라 특별위원회의 역할                                              |  |
| 기획단계 | 사전기획연구                  | - 사전 기획연구 <b>자문위원</b> 으로 참여                                       |  |
|      |                         |                                                                   |  |
| 구축단계 | 구축사업<br>정기점검            | - 구축 <b>사업계획의 승인, 변경, 조정</b> 등에<br>대한 <b>전문가 검토, 지원을</b> 수행       |  |
|      |                         |                                                                   |  |
| 활용단계 | 운영점검 및<br>활용제고          | - 해양 연구인프라의 <b>운영도, 활용도 점검</b> ,<br><b>공동활용 확대·중지</b> 등에 대한 자문 제시 |  |

## ② 관련 법제도 정비

- 해양수산과학기술육성법 등 관련 법제도 정비를 통해 「해양수산 연구인프라 중장기 로드맵(안)」의 이행력 확보
- □ (해양수산과학기술육성법) 연구시설·장비의 구축, 공동활용, 절차 등과 관련한 표준지침을 제정·시행할 수 있도록 일부 개정

#### < 육성법 일부 개정안 >

제11조(기술개발 성과의 활용촉진) (현행) ② 해양수산과학기술 연구개발사업의 결과물인 연구 장비·시설을 소유하고 있는 기관은 무상으로 또는 실비(實費)의 사용료를 받는 것을 조건으로 해양수산 관련 분야 연구자에게 해당 연구 장비·시설을 활용하도록 할 수 있다.

(신설) ③ 제2항에 따른 연구개발 장비·시설의 공동활용 대상, 절차, 사용료 책정기준, 관리운영 지원 등에 관한 세부 사항은 해양수산부령으로 정한다.

○ (시행령·규칙) 연구시설·장비 관리·운영·공동활용 실무 업무를 위임, 세부 절차를 정하여 고시할 수 있도록 근거 마련

| 조문                         | 주요내용                                                    |    |
|----------------------------|---------------------------------------------------------|----|
| 시행령 제21조(권한 등의 위임<br>및 위탁) | - 해양수산 연구인프라 공동활용, 플랫폼 구축·운영 관련<br>업무를 해양수산과학기술진흥원으로 위임 |    |
| 시행규칙 제3조(공동활용절차)           | - 해수부 장관이 공동활용 세부사항을 정하여 고시                             | 신설 |

□ (규정) 해양수산 연구 인프라의 분류, 공동활용 대상과 범위, 신청과 승인, 사용료, 인프라 운영 주체 분리지정 근거 등

| 조문                    | 주요내용                                                                                    |
|-----------------------|-----------------------------------------------------------------------------------------|
| 제1조(목적), 제2조(정의)      | - 연구개발 정보, 인프라 효율성 제고, 공동활용 촉진                                                          |
| 제3조(공동활용 대상, 범위)      | - 공동활용 대상 및 범위, 제외 대상 명시                                                                |
| 제4조(공동 활용 정보 구축)      | - 연구개발 정보 시스템 구축, 관리운영,<br>- 각 기관의 연구개발 정보 제공, 실시간 연계 등<br>- 비공개 / 부분공개 / 대국민 공개 분류 서비스 |
| 제5조~11조((공동활용 세부절차)   | - 공동활용 신청, 승인에 대한 절차, 기준, 양식<br>- 사용료 책정 기준, 면제 기준                                      |
| 제12조(활용도 조사)          | - 연구인프라 공동활용률 조사 및 관리                                                                   |
| 제13조(인프라 소유 운영권 지정 등) | - 구축 협약시 인프라 소유, 운영 분리여부 결정                                                             |

| 소유 | 운영      | 활용-연구 |
|----|---------|-------|
|    | 출연연 등 단 | ·독    |

 $\Rightarrow$ 

| 소유 | 운영-위탁 | 활용-연구            |
|----|-------|------------------|
| 국가 | 출연연 등 | 출연연,<br>대학, 기업 등 |

# [전략3] 해양수산 연구인프라 중장기 구축계획 마련

# [ 중장기 구축 계획 총괄표 ]

| 78          | 성제                         | 중장기 구축계획                            |                                                    |
|-------------|----------------------------|-------------------------------------|----------------------------------------------------|
| 구분          | 현재                         | 증기                                  | 장기                                                 |
| 연도          | ~'21                       | ~'26                                | ~′31                                               |
| 산업혁신        | 기초 연구 시설                   | 실증 검증 인프라                           | 디지털 트윈/Open Lab                                    |
| 스마트<br>해운항만 | ■ 항만 컨테이너 자동<br>검색기 연구시설   | ■ 항만자동화 테스트베드                       | ■ 선박해양 디지털 트윈센터                                    |
| 물류          |                            | ■ 자율운항선박 실증센터                       |                                                    |
| 수산양식<br>식품  | ■ 양식육종 연구시설,<br>수산자원조사선 등  | ■ 친환경·스마트 양식<br>테스트베드               | ■ 수산식품 스마트 가공공장 및<br>스마트 위판장                       |
| 해양          | ■해양생물자원                    | ■ 스마트 복합해양배양센터                      | ■ 해양생물다양성 디지털 저장소                                  |
| 바이오         | 배양실<br>■해양심층수 시설           | ■ 수산생명자원센터                          | ■ 극지해양생물 연구시설                                      |
| 해양장비        | ■ 수중로봇 실증센터                | -수중로봇 실증·성능고도화<br>및 상용화-            | ■ 수중로봇 디지털운용<br>시뮬레이션 실험실                          |
| 기업지원        | ■해양관측장비<br>검교정 센터          | ■ 해양연구장비 공동활용 시설<br>(Core-Facility) | ■ 해양과학기술 산학연 협력센터                                  |
| 환경안전        | 실험 연구수조                    | 해상 실증 인프라                           | 인프라 Scale-Up                                       |
| 친환경<br>선박   | ■ 해양공학수조<br>■ 심해·빙해수조      | ■ 선박용 대용량 전원공급 시스템<br>안전평가 Lab      | ■ 친환경 선박 대체연료 육상·<br>해상 테스트베드                      |
| 해양<br>에너지   | ■ 파력에너지 실해역<br>시험장 등       | ■ 바이오 수소 생산시설 고도화                   | ■ 해양그린수소 생산기술, 수소<br>항만, 벙커링 핵심기술 인프라              |
| 해양환경<br>·안전 | -                          | ■ 해양방사능 감시시스템 고도화                   | <ul><li>해양수산구조물 안전성능평가<br/>시스템, 연안방재연구센터</li></ul> |
| 영토강화        | 필수 연구 기반                   | 연구인프라 보완                            | 전략적 인프라 운영                                         |
| 해양영토        | ■ 이어도·소청초·가거초<br>해양과학기지    | ■ 울릉·독도 해양조사선                       | ■ 해양예보 슈퍼컴 인프라                                     |
|             | ■ 천리안위성 2호 등               | ■ 황해 대형 해양관측부이                      | ■ 동해 해양과학기지                                        |
| 극지대양        | ■남북극 기지                    | ■ 제2쇄빙연구선                           | ■ 극지관측용 큐브위성, 연구센터                                 |
|             | ■ 아라온호, 이사부호<br>■ 심해 잠수정 등 | ■ 해양극한지 모사 배양 및<br>활용 스테이션          | ■ 생명자원 전용조사선<br>■ 차세대 빙해수조                         |

※ 향후 대내외 정책변화, 재원확보 여부에 따라 탄력적으로 보완·추진

## ① 해양수산 주요산업의 스마트화 지원

- ◆ (동향) 스마트 항만물류, 스마트 수산양식, 자율운항 선박 등 전세계가 해양수산 산업 스마트화 분야에서 치열하게 경쟁중
  - \* 싱가포르, 중국 등은 **완전자동화 터미널 항만** 개발 및 확장중, 노르웨이 등은 **수산양식 자동화 시스템**을 통해 사료 공급 및 수질·어류 상태 관리 기술 고도화중
- ⇒ (추진전략) 해양수산 산업 스마트화 핵심 원천기술을 개발하고, 상용화, 표준화를 지원하기 위한 실·검증 연구 인프라 적기확보

| 구분          | 현재                        | 중장기                   | 구축계획                         |
|-------------|---------------------------|-----------------------|------------------------------|
| 丁正          | 전세                        | 중기                    | 장기                           |
| 정책방향        | 기초 연구 시설                  | 실증 검증 인프라             | 디지털 트윈/Open Lab              |
|             | ~'21                      | ~'26                  | ~'31                         |
| 스마트<br>해운항만 | ■ 항만 컨테이너 자동<br>검색기 연구시설  | ■ 항만자동화 테스트베드         | ■ 선박해양 디지털 트윈센터              |
| 물류          |                           | ■ 자율운항선박 실증센터         |                              |
| 수산양식<br>식품  | ■ 양식육종 연구시설,<br>수산자원조사선 등 | ■ 친환경·스마트 양식<br>테스트베드 | ■ 수산식품 스마트 가공공장 및<br>스마트 위판장 |

- □ (스마트 포트) 최소한의 인력으로 24시간 저탄소 친환경 항만 물류처리가 가능한 자동화항만의 국내 기술기반 확보\* 추진('26)
  - \* 항만자동화 테스트베드 / '22~'26(예타추진) / 광양항 3-2단계 컨테이너터미널(4선석)
- 부산, 광양 등 항만별 상황에 맞게 **자동화, 지능화, 안전화 설비를** 시범 적용\*하는 한편, 미래항만 형태의 통합 테스트베드 확보
  - \* lot 웨어러블 장비, 5G 통신을 적용한 지능형 항만물류 기술(부산항), 고생산성 컨테이너 자동하역시스템(광양), CCTV·위험감지 기술을 적용한 크레인(부산항 신항) 등
- □ (자율운항선박) 자율운항 기술 상용화 및 사업화를 지원하고 국제 표준을 선도하기 위한 자율운항선박 성능실증 센터 구축('24)
- 운항 효율 극대화를 위한 **자율운항 지능화·기관자동화 시스템** 및 항만에 안전하게 **입·출항**할 수 있도록 **지원**하는 **육상연계** 기술 실증
  - \* 자율운항선박 성능실증 센터 및 자율주행차량 승하역 기술 실증센터(울산) 등

- □ (해상통신) 차세대 선박의 운항안정성 및 성능 검증을 위한 가상 해양공학수조, 산업용 오픈플랫폼 등 디지털 트윈센터 구축('28)
  - \* 초고속 해상무선통신망(LTE-M, 기지국 263개), 운영센터(9개소) 등 인프라 연계
- 차세대 해상디지털 통신시스템(VDES) 핵심기술 및 시험검증 환경 개발을 통해 관련 산업 육성 지원 및 전국망 연계·운영



항만자동화 테스트베드(광양항)



자율운항선박 성능실증센터 선박해양 디지털 트윈센터



- □ (스마트 양식) 육안과 경험에 의존해 온 양식산업을 디지털 기반으로 단계별 전환하기 위한 친환경·스마트 양식 테스트베드 구축('27)
- (초기) 첨단양식 핵심기술 고도화(ICT 기반 자동화 시스템, BFT, 아쿠아포닉스 등) 및 관련 양식기자재 개발
- (중기) 데이터 확보를 통해 산업화 실현 및 융 복합 첨단양식 통합제어시스템 고도화 기술개발



- (완성기) 친환경 스마트양식 기술 교육 및 시스템 보급 환경 구축\*으로 빅데이터를 활용한 AI 기반의 "저탄소/진환경 스마트양식" 기반 마련
  - \* 실증화 연구(현장실증, 현장교육) 및 저탄소/친환경 스마트양식 인증체계 기반 마련
- □ (스마트 수산 가공·유통) AI·IoT 등이 융·복합된 수산식품 가공· 수산물 신선유통 기술 개발('25), 실증테스트 및 단계적 보급
- **수산식품**(김,굴,어묵) 가공공정에 **자동화·지능화** 기술도입 및 수산물 양륙-선별-위판·포장 과정 자동화 등 위판장 표준모델 등 개발

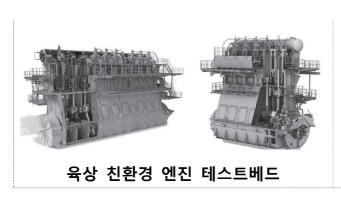


\* 수요기업 현장실증, 스마트가공설비 보급 및 단계적 위판장 현대화소마트화 추진

## ② 신산업 및 중소기업 지원을 위한 기반 제공

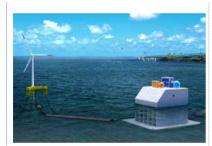
- ◆ (동향) 해양바이오, 해양장비 등 해양수산 신산업 시장이 '30년까지
  빠르게 성장할 것으로 예상(시장규모 2.9배, 연평균성장률 8.5%)\*
  - \* Douglas-Westwood('17), GIA('15), Global Wellness Institute('17) 등 발표
  - ⇒ (추진방향) 해양수산 신산업 성장과 자생하는 민간산업 생태계 조성을 위해 기업의 창업·성장 지원을 위한 연구인프라 제공

| 구분        | 현재 시설                         | 중장기 구축계획                            |                                    |
|-----------|-------------------------------|-------------------------------------|------------------------------------|
| 丁正        | 전세 시절                         | 중기                                  | 장기                                 |
| 정책방향      | 실증연구 시설                       | 공동활용 인프라                            | 시뮬레이션/슈퍼컴 등                        |
|           | ~'21                          | ~'26                                | ~'31                               |
| 해양<br>바이오 | ■ 해양생물자원<br>배양실<br>■ 해양심층수 시설 | ■ 스마트 복합해양배양센터<br>■ 수산생명자원센터        | ■ 해양생물다양성 디지털 저장소<br>■ 극지해양생물 연구시설 |
| 해양장비      | ■수중로봇 실증센터                    | -수중로봇 실증·성능고도화<br>및 상용화-            | ■ 수중로봇 디지털운용<br>시뮬레이션 실험실          |
| 기업지원      | ■ 해양관측장비<br>검교정 센터            | ■ 해양연구장비 공동활용 시설<br>(Core-Facility) | ■ 해양과학기술 산학연 협력센터                  |


- □ (해양바이오) 해양바이오 신소재의 산업적 활용을 지원하기 위해 해양 바이오정보 공유 플랫폼 및 평가 실증센터 구축('27)
  - \* 해양바이오 기업의 사업화 전주기를 지원하는 인큐베이터 역할
- □ (해양장비) 심해 수중환경 재현 시뮬레이터 및 디지털 운용시뮬레이션 등 로봇개발 환경 구축을 위한 해양로봇 실증연구 센터 고도화('27)
  - \* 경작업용·중작업용·트랙기반 로봇 제작('13~'19, 814억원) 및 기술이전 완료
- □ (기업지원) 해양수산 기업활동 지원을 위해 산학연 연구장비 공동활용,개발된 제품의 표준인증, 상용화를 위한 성능시험 공간 등을 지원('24)
  - \* 해양과학기술 산·학·연 협력센터, 해양장비공동활용시설(Marine Core Facility) 등

## ③ 해양수산 탄소중립과 안전강화 기술연구 환경 구축

- ◈ (동향) 선진국들은 탄소중립, 해양환경 규제 강화\* 등에 대응하여 친환경선박, 해양에너지 시장 선점을 위해 핵심기술 개발 추진중
  - \* 선박연료 황 함유량 3.5%→0.5%('20년), 온실가스 배출량 '08년 대비 50% 이상 감축(~'50), 노르웨이 Green Voyage 2050 프로젝트, 덴마크 2030년 무탄소 선박 로드맵 추진 등
  - ⇒ (추진방향) 친환경선박, 해양에너지 핵심 원천기술을 확보하고, 국제 표준화 지원, 해양환경·안전 향상 지원 연구인프라 확보


| 구분          | 현재 시설                 | 중장기                            | 구축계획                                  |
|-------------|-----------------------|--------------------------------|---------------------------------------|
| TE          | 건세 시절                 | 중기                             | 장기                                    |
| 정책방향        | 실험 연구수조               | 해상 실증 인프라                      | 인프라 Scale-Up                          |
|             | ~'21                  | ~'26                           | ~'31                                  |
| 친환경<br>선박   | ■ 해양공학수조<br>■ 심해·빙해수조 | ■ 선박용 대용량 전원공급 시스템<br>안전평가 Lab | ■ 친환경 선박 대체연료 육상·<br>해상 테스트베드         |
| 해양<br>에너지   | ■ 파력에너지 실해역<br>시험장    | ■ 바이오 수소 생산시설 고도화              | ■ 해양그린수소 생산기술, 수소<br>항만, 벙커링 핵심기술 인프라 |
| 해양환경<br>·안전 | -                     | ■ 해양방사능 감시시스템 고도화              | ■ 해양수산구조물 안전성능평가<br>시스템, 연안방재연구센터     |

- □ (친환경 선박) 한국형 친환경선박 기술(전기, 수소, 암모니아, 혼합연료 등)의 안전성·신뢰성 검증을 위한 Greenship-K 육해상 테스트베드 구축('27)
- 성능평가 실적이 있거나 이미 상용화된 기술은 연안 선박 중심 으로 실증하고('21~), 검증 후에 대형선박으로 확산(~'30)





- □ (해양에너지) 조류·파력·해수온도차 등 신재생에너지 생산·보급 및 상용화를 지원하기 위한 해양에너지 실해역 시험장 연계 구축('26)
  - \* 태양광 1,807GW, 풍력 739GW, 조류 109GW, 파력 18GW, 해수온도차 9GW 등
- (그린수소) 파력발전 실해역 시험장(제주)에서 재생에너지 전력과 해수를 활용한 수소 생산시스템을 개발하고 실증 연구 추진('22~)
- (바이오수소) 국내 원천기술로 개발된 해양바이오수소 실증 플랜트(태안)의 상용 수소생산을 위한 설비 고도화 및 국내 인증 획득
  - \* 해양미생물(NA1)을 촉매로 이용, CO(부생가스, 합성가스)와 해수를 원료로 수소 생산
- □ (**수소항만**) 대규모 순수 수소를 안정적으로 공급·활용하기 위한 **탄소** 중립 수소항만 구축 및 운영 핵심기술 확보 추진('31)
  - \* 기존 유휴항만 부지 등을 활용, 수소 생산, 보관 및 활용을 위한 벙커링, 해외 공급 네트워크 구축 등 기술개발 추진



해양그린수소 테스트베드 바이오수소 테스트베드

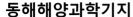




수소항만 테스트베드

- □ (환경·안전) 인접국가 해양방사능 사고 등에 따른 국내 연안해역 영향 진단 등을 위한 해양 방사성물질 감시 시스템 고도화('22)
  - \* 감시 정점 확대, 감시 장비 확충, 예측 모델 고도화 등
- 해양수산구조물(해저, 고정식, 부유식)의 손상, 침몰, 파괴, 절단, 피로 등에 관한 시험이 가능한 해양구조물 안전성능평가 시스템 개발('30)
- □ (기후예측) 해양 기후변화 관련 정보의 수집 및 분석을 통해 연안 월파, 침식원인 파악·규명을 위한 연안방재연구센터 구축('26)
- ㅇ 한반도 주변해역 기후변화 장기전망 모델을 구축하여 시나리오를 분석하고, 변화를 예측·전망하는 해양기후 예측시스템 구축('30)

## ④ 영해, 극지 및 대양 등 전략형 해양탐사 확대


- ◈ (동향) 중국, 일본 등 주변국들은 자국의 해양영토 확대를 위해 대양, 극지 등에서 자원탐사 및 과학구조물 설치 활동 확대중
  - \* 중국이 한·중 EEZ 가상중간선을 넘어선 우리측 해역에 대형 해양관측부이를 설치('20), 일본은 수중암초에 인공구조물을 설치, 제7광구의 독자 탐사·개발도 준비중
- ⇒ (추진방향) 중·일 등 선진국들의 공격적인 해양과학조사, 자원 개발 등에 상응한 전략형 탐사 및 연구 인프라 구축

| 구분   | 현재 시설                                  | 중장기                                     | 구축계획                                             |
|------|----------------------------------------|-----------------------------------------|--------------------------------------------------|
| TE   | 전세 시크                                  | 중기                                      | 장기                                               |
| 정책방향 | 필수 연구 기반                               | 연구인프라 보완                                | 전략적 인프라 운영                                       |
|      | ~'21                                   | ~'26                                    | ~'31                                             |
| 해양영토 | ■ 이어도·소청초·가거초<br>과학기지, 천리안<br>위성 2호 등  | ■ 울릉·독도 해양조사선<br>■ 황해 관측부이, 소형장비        | ■ 해양예보 슈퍼컴 인프라<br>■ 동해 해양과학기지                    |
| 극지대양 | ■ 남북극 기지<br>■ 아라온호, 이사부호<br>■ 심해 잠수정 등 | ■ 제2쇄빙연구선<br>■ 해양극한지 모사 배양 및<br>활용 스테이션 | ■ 극지관측용 큐브위성, 연구센터<br>■ 차세대 빙해수조<br>■ 생명자원 전용조사선 |

- □ (해양영토) 체계적이고 해양영토 관리, 해양재해 예방 등을 위한 조사선, 과학기지, 해양예측 모델 운영 인프라의 전략적 확대
- (**과학기지**) 현재 이어도, 소청초 등 황해·동중국해에 구축·운영중인 과학기지 관측망의 빈공간인 **동해에 동해 해양과학기지** 구축('27)
- (**탐사장비**) 기존 노후화된 해양과학조사선의 **단계적 대체건조**와 함께 독도 등 거점 조사연구를 위한 소형조사선, 무인 탐사장비 확보
- (예보인프라) 국가R&D를 통해 개발중인 해양예측 모델(해일, 조류, 해안침식 등) 현업화를 위한 해양예보 슈퍼컴퓨팅 인프라 구축('28)

#### < 해양영토 관련 연구인프라 >







소형 무인탐사 장비



해양 슈퍼컴퓨팅

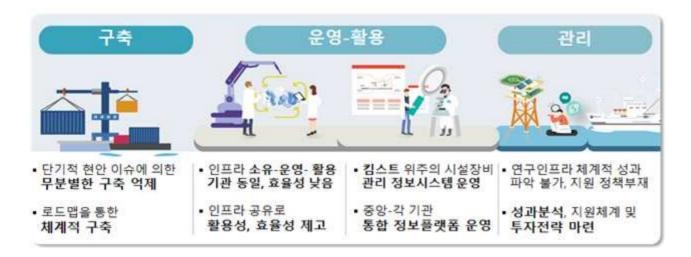
- □ (국지) 순수 과학연구 중심에서 북극항로 등 과학 연구에 기반한 경제·산업적 성과 창출로 전환하기 위한 핵심 인프라 구축
  - \* 러시아 등 선진국은 북극항로 물동량 확대, LNG 등 해양에너지 개발 사업 확장중
  - (쇄빙선) 북극해 미답지역 연구와 북극권 현안해결, 북극해 고위도 국제 공동연구 주도를 위한 **차세대 쇄빙연구선** 구축('27)
  - (위성 등) 북극권 해빙 원격관측 능력 향상을 위한 북극 전용 소형 큐브위성 개발, 경제적 극지 활용을 위한 그린란드 연구기지 구축('31)



차세대 쇄빙연구선



극지 큐브위성




그린란드 연구기지

- □ (대양) 육상자원 고갈시대에 대비한 미래 해양자원 확보를 위해 심해저 자원(망간각 등), 해양생물자원 **탐사, 수집 전용 인프라 확충**
- (탐사로봇) 원격으로 조작 가능한 해저 암반, 퇴적물 샘플링 및 지반 시추 시스템(BMS), 원격조정 무인잠수정 등 개발('28)
- (**자원선박**) BBNJ\* 등 해양생물자원 이용 제한 강화에 대응하여 생물 다양성이 높은 **심해**深海, 극지 **생명자원 확보 전용 조사선** 확보('27)
  - \* Biodiversity Beyond National Jurisdiction(공해 등에서의 생물다양성 협정), 공해 자원 접근 시 사전 허가 및 개발이익 공유 등 규정(UN 주관 제4차 정부간회의, '21)

# Ⅵ. 기대효과 및 향후계획

### 1 기대효과



# [운영활용] 연구인프라 공동활용 확대

#### As-Is

- 연구인프라의 소유-운영-활용 기관 동일, 인프라 활용성, 효율성 낮음
- ■킴스트 위주의 시설·장비 관리 정보시스템만 운영

#### To-Be

- 인프라 공유로 활용성·효율성 제고
- ■중앙-각기관 통합 정보플랫폼 운영

# 2 [관리] 연구인프라 유지관리 및 신뢰성 강화

#### As-Is

- ■연구시설의 체계적 성과 파악 불가
- ■시설·장비 정책의 지원기준 부재

#### To-Be

- ■국가차원의 정보등록관리 및 성과분석
- ■성과기반 지원체계 및 투자전략 마련

## 3 (구축) 연구인프라 중장기 로드맵

#### As-Is

#### To-Be

■ 단기적 현안 이슈에 의한 구축



■로드맵을 통한 체계적 구축

# ② 향후계획

|                           | 추진과제                          | 관련부처                  | 일정      |  |  |  |  |  |
|---------------------------|-------------------------------|-----------------------|---------|--|--|--|--|--|
| 【전략1】해양수산 연구인프라의 공동활용 활성화 |                               |                       |         |  |  |  |  |  |
|                           | 1. 해양수산 연구시설 공동활용 기반 마련       | 해수부,<br>과기부 등         | ′21~′23 |  |  |  |  |  |
|                           | 2. 해양수산 연구인프라 공동활용센터 신설운영     | 해수부                   | ′22~    |  |  |  |  |  |
| Į.                        | 【전략2】해양수산 연구인프라 관리역량 강화       |                       |         |  |  |  |  |  |
|                           | 1. 정책 전문성 및 신뢰성 제고            | 해수부                   | ′21~′22 |  |  |  |  |  |
|                           | 2. 관련 법제도 정비                  | 해수부                   | ′21~′22 |  |  |  |  |  |
| [3                        | 【전략3】해양수산 연구인프라 중장기 구축계획 마련   |                       |         |  |  |  |  |  |
| <                         | <4차 산업혁명 기반 연구혁신>             |                       |         |  |  |  |  |  |
|                           | 1. 해양수산 주요산업의 스마트화 지원         | 해수부,<br>산업부,<br>과기부 등 | ′21~′31 |  |  |  |  |  |
|                           | 2. 신산업 및 중소기업 지원을 위한 기반 제공    | 해수부,<br>지자체 등         | ′21~′31 |  |  |  |  |  |
| <해양환경 개선 및 안전 확보>         |                               |                       |         |  |  |  |  |  |
|                           | 3. 해양수산 탄소중립과 안전강화 기술연구 환경 구축 | 해수부,<br>산업부,<br>과기부 등 | ′21~′31 |  |  |  |  |  |
| <미래 해양영토 강화 지원>           |                               |                       |         |  |  |  |  |  |
|                           | 4. 영해, 극지 및 대양 등 전략형 해양탐사 확대  | 해수부,<br>과기부,<br>산업부 등 | ′21~′31 |  |  |  |  |  |

### [참고] 해양수산 연구인프라 역할 및 특징

### ① 열악한 해양환경 연구활동을 위한 필수 기반

◈ 연구과정에서 필요한 현장의 정보(데이터 및 시료 등) 확보를 위해서는 대양, 극지, 심해저 등 해당 현장에 접근, 연구활동을 위한 인프라가 필수



<대양 조사연구>



<극한지 탐사>



<해저 시료채취>

#### ② 해양 현상 재현을 위한 거대성

● 대기 및 담수(육상의 물)와 다른 매질 특성(염도, 비중, 온도 등)의 차이, 고파랑 등 해양 연구결과의 실검증, 상용화를 위한 다양한 대형 실증설비가 요구



<대형 시험수조>



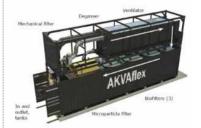
<선박 시험시설>



<스마트항만 시험시설>

# ③ 국내 자체기술 부족, 해외 의존도 높음

- 플랜트, 선박 등 국내 산업에 기반한 시설 분야는 양호하나, 연구에 필수적인 센서, 장비의 대부분을 해외수입에 의존중, 핵심 장비에 대한 체계적 관리가 요구됨
  - \* 해양 탐사 장비의 95%를 해외 수입에 의존(해양 음향측심물성 모니터링 국산화, 2018)


## 대표적 100% 완전수입 범용 해양장비



<수온·밀도·수심 측정기>



<수중 글라이더>



<모듈형 순환여과시스템>

# 해양수산 연구인프라 예시

# 구 분 개 요 □ 남극세종과학기지 ○ 구축시기/예산 : '88.2 / 147억원 ○ 위 치 : 남쉐클랜드군도 킹조지섬(남위 62도) ○ 현 황 : 연면적(5,290m²) / 월동연구대 17명 상주 □ 남극장보고과학기지 ○ 구축시기/예산 : '14.2 / 1,047억원 ○ 위 치 : 동남극 테라노바베이(남위 74도) ○ 현 황 : 연면적(4,661 m²) / 월동연구대 17명 상주 □ 북극다산과학기지 ○ 구축시기/예산 : '02.4 / -억원 ○ 위 치 : 노르웨이령 스피츠베르겐 섬(북위 79도) ○ 현 황 : 연구실 및 숙소 250 m² (임차 사용중) □ 쇄빙연구선 아라온호 ○ 구축시기/예산 : '19.11 / 1,085억원 ○ 쇄빙성능 : 두께 1m의 일년빙을 시속 3노트로 쇄빙 ○ 제 원 : 전장 111m 선폭 19m / 총톤수 7,507톤 \* 승선인원 : 연구원 60명 / 승무원 25명 □ 이사부호 ○ 구축시기/예산 : '16.5 / 1,019억원 ○ 승선인원 : 연구원 35명 / 승무원 25명 ○ 제 원 : 전장 99.80m, 선폭 18.00m, / 총톤수 5,894톤

# 붙임2 해양수산 연구인프라 수요조사 결과

| No | 대분류              | 소분류                            | 시설명                            | 구축기간      | 추정<br>비용<br>(억원) | 목적                                                                                                                |
|----|------------------|--------------------------------|--------------------------------|-----------|------------------|-------------------------------------------------------------------------------------------------------------------|
| 1  |                  | 스마트<br>항만                      | 스마트 항만<br>테스트 베드               | 2021~2023 | 50               | 25000 TEU 이상 초대형 컨테이너선<br>대응 차세대 자동화 컨테이너 터미널<br>기술 실증 및 상용화를 위한 테스트베드                                            |
| 2  |                  | 자율운항<br>선박                     | 자율운항선박<br>성능실증센터               | 2021~2024 | 50               | 시험 운용중인 자율운항선박의 성능검<br>증, 시험평가 및 인증을 위한 육상시험<br>및 해상 시운전에 필요한 해상 시운전<br>테스트베드, 제반 시험과 장비                          |
| 3  | 1.<br>스마트화       | 해상통신                           | 해사<br>디지털트윈 통합<br>Lab          | 2025~2028 | 40               | 선박해양 분야에서 개발 중인 여러<br>종류의 Digital Twin을 상호 연계하여<br>활용                                                             |
| 4  |                  | 스마트<br>양식                      | 스마트양식<br>테스트베드                 | 2021~2023 | 39               | 아쿠아팜 4.0 혁신기술의 민간양식어가 맞춤형 보급, 연관산업 지원육성, 산·학·연 협력 강화 마련을 위한 융복합 연구시설로서 하드웨어와 소프트웨어를 동시에 구현할 수 있는 융복합 양식기술 현장검증 시설 |
| 5  |                  |                                | 스마트<br>복합해양<br>배양센터            | 2022~2025 | 480              | 표준화된 원천소재의 대량배양 수조시<br>스템 구축                                                                                      |
| 6  |                  | 해양<br>바이오<br>2.<br>!산업기업<br>지원 | 수산생명<br>자원센터                   | 2023~2025 | 330              | 분산관리 중인 수산자원의 통합관리를<br>통한 효율적·체계적 관리체계를 마련하기<br>위한 생명자원 보존센터                                                      |
| 7  |                  |                                | 해양생물다양성<br>디지털 저장소             | 2023~2027 | 70               | 해양수산생명자원을 비대면 방식으로<br>연구할 수 있는 해상도 높은 데이터를<br>생성 및 서비스 제공                                                         |
| 8  | 2.               |                                | 극지 해양생물<br>연구용<br>아쿠아리움<br>시스템 | 2025~2026 | 450              | 연중 평균 수온 0℃에 서식하는 극지<br>해양생물을 유지, 배양 및 인공종묘 생산<br>시설을 갖춘 극지 해양생물 맞춤형 아쿠아<br>리움 시스템                                |
| 9  | 신산업기업<br>지원      |                                | 단세포 연구센터                       | 2027~2029 | 450              | 생물의 단세포 분리를 기본으로, 차세<br>대염기서열분석, 유용 생명정보분석,<br>첨단 이미지분석, 생태기능 및 생리활성<br>검증                                        |
| 10 |                  |                                | 수중로봇디지털<br>운용시뮬레이션<br>실험동      | 2025~2027 | 20               | 기존 심해저 집광 실험동을 ICT 융복<br>합 기술을 접목시킨 수중로봇의 스마<br>트 운용기술 개발 및 실험 검증                                                 |
| 11 |                  | 해양장비                           | 가상해양공학<br>수조 고성능<br>연산 플랫폼     | 2025~2027 | 400              | 디지털 공간에서 선박/해양구조물의<br>통합성능평가를 위해 개발된 가상해양<br>공학수조 구현을 위한 대용량병렬연산<br>장치                                            |
| 12 |                  | 기업지원                           | 해양연구지원<br>시설-CoreFacility      | 2021~2024 | 199              | 보유하고 있는 다양한 해양관련 연구<br>장비의 민간공유 활성화를 위한 해양<br>연구지원시설(Marine Core Facility)                                        |
| 13 | 3.<br>해양안전<br>환경 | 해양오염                           | 해양방사성물질<br>감시체계 고도화            | 2022      | 44               | 연안해역 등 국내 해역의 해양방사성<br>물질 조사·예측 등 감시체계 고도화                                                                        |
| 14 |                  |                                | 해양생물<br>수장연구동                  | 2022~2024 | 35               | 해양바이오 산업화를 위해 해양생물<br>유래 원천소재 및 정보제공 역할을 하<br>는 연구시설로서, 해양수산생명자원에<br>특화된 독립적 인프라 구축                               |
| 15 |                  |                                | 해양포유류<br>복합연구동                 | 2027~2028 | 330              | 국립수산과학원 고래연구센터 부지 내해양포유류의 생물 측정에서 유전자 DB 관리까지 one-step으로 가능한 3층 규모의 복합 연구시설                                       |

| No | 대분류           | 소분류       | 시설명                                     | 구축기간      | 추정<br>비용<br>(억원) | 목적                                                                                                                                |
|----|---------------|-----------|-----------------------------------------|-----------|------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 16 |               | 해양안전      | 해양수산용<br>LMO<br>환경위해성<br>평가시설           | 2022~2024 | 50               | 우리나라로 유입 가능성이 높거나 국내<br>개발 중인 해양수산용 LMO를 대상으로<br>해양생태계 위해성을 평가하기 위한<br>실험시설                                                       |
| 17 |               |           | 해양잠수<br>고압챔버<br>연구센터                    | 2025~2027 | 314              | 해양잠수사와 관련된 R&D 연구와 고압<br>챔버를 이용한 장비 개발                                                                                            |
| 18 |               |           | 해양수산구조물<br>안전성능<br>평가시스템                | 2027~2030 | 270              | 다양한 형태의 해양수산구조물에 관한<br>안전성능평가 및 설계검증 시스템                                                                                          |
| 19 | - 4.<br>기후에너지 |           | 친환경대체연료<br>해상테스트베드                      | 2021~2025 | 250              | 선박 온실가스 저감을 위한 무탄소연료<br>혼소엔진, 연료전지, 배터리의 신뢰성<br>및 안전성을 실증하고 해상 Track<br>Record 확보를 지원할 수 있는 해상테<br>스트베드                           |
| 20 |               |           | HILS 기반<br>친환경 대체연료<br>신뢰성 안전성능<br>평가장비 | 2022~2026 | 20               | 친환경 대체 연료의 선박 탑재, 운용성과 신뢰성 및 안전성의 평가가 가능한 HILS(Hardware In the Loop Simulation) 기반 평가 장비                                          |
| 21 |               |           | 선박용 대용량<br>전원공급시스템<br>충전 및<br>안전평가 Lab  | 2021~2024 | 20               | 전기추진 선박 대용량 이동식 전원 공급<br>시스템의 충전 및 운용안전성 평가를<br>위한 대용량 충전 인프라 구축                                                                  |
| 22 |               | 해양에너<br>지 | 30MW<br>해양재생에너지<br>실해역시험장               | 2022~2026 | 2,500            | 30MW 해양재생에너지장치의 계통연계<br>성능평가, 설치·회수기술 검증, 운용<br>최적, 그린수소 생산기술 검증 등이 가<br>능한 실증 인프라 구축                                             |
| 23 |               | 탄소중립      | 소형탄소연대<br>측정시설                          | 2025~2026 | 400              | 해수시료, 침강입자시료, 탄산염, 퇴적물<br>시료의 탄소연대측정                                                                                              |
| 24 |               | I         | 이어도호 대체<br>종합해양연구선                      | 2021~2024 | 3,250            | 우리나라 연근해와 배타적 경제수역 내에서 해역조사, 특성연구, 해양생태계변화 등 연구에 활용                                                                               |
| 25 |               |           | 자율무인잠수정                                 | 2022~2024 | 3,250            | 전위도별 해양을 상시 운항하는 연구<br>선에 탑재하여 모선과 독립적으로 스<br>스로 일정 구간에 대한 무인탐사가 가<br>능한 자율무인잠수정 개발                                               |
| 26 |               |           | 북극 관측용<br>큐브위성                          | 2023~2027 | 450              | 기후변화 대응을 위한 북극 큐브위성:<br>북극관측용 큐브위성 3기                                                                                             |
| 27 | 5.<br>해양영토    |           | 해양2000호                                 | 2022~2024 | 590              | 해저지형 및 해양현상 조사용 각종<br>장비(멀티빔, 지층탐사기, 중력·자력계,<br>초음파해류계, CTD 등)를 탑재한 3천<br>톤급 친환경 해양조사선박                                           |
| 28 |               |           | 다목적<br>독도(울릉도)<br>전용 형조사선               | 2021~2022 | 2,500            | 울릉도를 정박지로 하여 연중 수시로<br>울릉도-독도간 해양조사, 독도 주변해역의<br>해양생물조사, 해양물리적 특성 연구                                                              |
| 29 |               |           | 측면주사<br>음향측심기                           | 2027~2028 | 25               | 조사선 후방에서 윈치에 감겨있는 예인<br>케이블로 TowFish를 예인하면서 해저면<br>에서 반사되어 돌아오는 신호를 획득<br>하는 시스템                                                  |
| 30 |               | 극지대양      | 해양극한지<br>모사 배양 및<br>활용 스테이션             | 2023~2025 | 100              | 해양·극한환경에서 유래된 생물의 실제<br>생존환경을 모사하여 해양·극한생물의<br>배양 및 소재생산에 활용                                                                      |
| 31 |               |           | 심부빙하 시추기                                | 2025~2029 | 30               | 지역에 존재하는 빙하를 전기·기계적<br>절삭방법 이용하여 원통형(내경60-200m)<br>빙하코어 시료를 채집할 수 있는 기계<br>장치로 발전기, 케이블, 드럼, 마스트(기둥),<br>시추기 및 활동에 필요한 부속품과 일체 시설 |

|    |     |     |                                        |           | 추정         |                                                                                                                                               |
|----|-----|-----|----------------------------------------|-----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| No | 대분류 | 소분류 | 시설명                                    | 구축기간      | 비용<br>(억원) | 목적                                                                                                                                            |
| 32 |     |     | 해양 슈퍼컴<br>센터                           | 2025~2027 | 1,400      | 개발중인 해양예측모델의 안정적 운영과<br>해양예보 현업화를 위해 최소 10PF*(페타<br>플롭스) 규모 이상의 해양슈퍼컨센터 구축                                                                    |
| 33 |     |     | 차세대중형위성                                | 2027~2030 | 1,200      | 해양기후, 해양 재난재해 예측시간 단축<br>및 정확도 향상을 위한 정밀 해양관측<br>저궤도 중형위성용 해양관측 탑재체                                                                           |
| 34 |     |     | 고고도 무인기<br>소형 탑제체<br>개발                | 2023~2027 | 150        | 다양한 해양감시와 관측을 위해 드론 및<br>소형 위성 등에서 활용 가능한 소형센서<br>(광학, 라이다, SAR 등) 개발<br>* 고고도 무인기는 과기부 개발 중인<br>'태양광 드론' 도입(23~27, 375억원)                    |
| 35 |     |     | 차세대<br>쇄빙연구선                           | 2022~2027 | 2,774      | 북극해 고위도 연구                                                                                                                                    |
| 36 |     |     | 극한지 환경<br>모사 시험 시설                     | 2025~2029 | 30         | 극한지의 육상, 해양, GNSSRF, 지구자<br>기장 환경을 모사하여 극한지에서 활<br>용을 위해 개발된 연구장비를 현장에<br>투입전 기능/ 성능시험을 수행                                                    |
| 37 |     |     | 심해 극한해역<br>무인 탐사로봇<br>선단               | 2025~2028 | 400        | 심해의 환경, 자원, 생태계 탐사와 국가적해양 재난에 대처하기 위한 심해 무인 잠수정 편대와 특수목적 전문연구선으로구성된 심해 탐사로봇선단의 이동형인프라시설                                                       |
| 38 |     |     | 심해 수중환경<br>재현 시뮬레이터<br>(챔버)            | 2025~2029 | 182        | 수중탐사 및 심해 에너지 자원 탐사/발굴의<br>핵심 장비와 심해용 기자재의 연구개발<br>및 상용화 과정에서 심해환경(수압, 수온,<br>유속 등) 내에서 성능검증 및 안전성<br>평가를 실시할 수 있는 심해 수중환경<br>재현 초고압/대형 시뮬레이터 |
| 39 |     |     | 해양생물<br>과학조사선                          | 2022~2024 | 270        | 해양생물 특수목적선 건조.운영                                                                                                                              |
| 40 |     |     | 차세대빙해수조                                | 2027~2030 | 450        | 냉동공조시스템으로 수조 내부 온도를<br>-20℃ 이하로 만들어 원하는 두께와<br>강도로 모형빙(Model ice)을 생성시키<br>고 극지 빙해 환경을 재                                                      |
| 41 |     |     | 트윈오터 항공기                               | 2027~2029 | 40         | 남극 빙저 지형(BEDMAP) 조사를 위한<br>항공기 플랫폼, 다중 주파수 레이더 및<br>초분광계, LiDAR, SAR 통합 센서 모듈을<br>장착하여 광역빙상 탐사에 활용                                            |
| 42 |     |     | 천해지반탐사<br>시추선                          | 2025~2027 | 450        | 수심 200m 이하의 대륙붕해역에서<br>해저지층을 시추하고 지반탐사                                                                                                        |
| 43 |     |     | 원격조정<br>무인잠수정<br>(ROV)                 | 2025~2027 | 95         | 통신케이블에 의해 선박이나 부유 플<br>랫폼에 연결되어 심해산업에서 흔히<br>사용되는 해양 복합 이동체                                                                                   |
| 44 |     | 심해저 | 해저 다용도<br>코어<br>시스템(BMS)               | 2025~2027 | 150        | 원격으로 조작가능한 해저 암반, 퇴적물<br>샘플링 및 지반공학 테스트 시스템                                                                                                   |
| 45 |     |     | 해저시추코어<br>퇴적물 자동연속<br>비파괴 측정<br>스캔 시스템 | 2025~2026 | 199        | 퇴적물·퇴적암의 기초 물리특성과 내부 2차원/3차원 영상이미지를 고밀도 간격에서 동시에 비파괴·연속적 방식으로 측정하고 스캔하여 실시간으로 측정값과이미지를 획득                                                     |

<sup>\*</sup> 관련 기관 수요조사 결과로 실제 사업기간, 예산 등은 추후 관계부처 협의를 거쳐 추진

해양수산부 해양수산과학기술정책과

담당자 안장현 사무관

연락처 전 화: 044-200-6221

E-mail: oceanjh@korea.kr