극지과학 미래발전전략

- 극지연구 선도국 도약을 위한 4대 추진전략 -

2020. 11.

관계부처 합동

극지과학 미래발전전략(요약)

1. 추진배경

- □ 극지는 **기후변화 연구**를 위한 최적지로, 북극 해빙으로 **북극항로 활성화**, **수산자원 확보** 등 가능성이 높아짐에 따라 극지과학 연구 필요성 증대
- □ 우리나라도 **극지연구소**를 설립('04)하고, **남·북극 과학기지 설치, 아라온호**를 건조('09)하여 남·북극 연구를 추진 중이나,
 - 북극 저위도 등 **연구 범위**가 **제한적**이고 국민이 체감할 수 있는 연구 성과와 체계적인 **지원 기반**이 미흡한 상황
- ⇒ 기존 극지연구에서 벗어나 **국가와 국민의 요구에 부응**하고 **극지** 연구의 한단계 도약을 위한 "극지과학 미래발전전략" 수립 추진

2. 국내·외 주요 동향

- □ (국제 동향) 과학연구를 통한 영향력 확대를 위해 국제공동연구*가 활발히 진행되고 있으며, 대규모 인프라 구축** 등 국가차원의 투자 강화
 - * 북극해 환경변화 관측 공동연구(MOSAiC 프로젝트 / 독,러,한 등 20개국 참여/ '19~'20), 스웨이트 빙하 붕괴 연구(한,미,영 / '19~) 등
 - ** 해외 쇄빙연구선 현황. 미 3척(3척 추가 건조중), 러 4척, 중 2척, 일 1척(1척 추가 건조 중) 등
- □ (국내 동향) 극지연구소는 정부 R&D, 출연금 등의 재원으로 기초·응용 연구를 수행 중이며, 산·학·연 네트워크 구축 등 협력을 확산하는 추세
 - (성과) 한반도 기후변화 원인 규명, 제2형 당뇨병 치료제 등 극지 미생물의 유용물질 추출을 통한 신소재를 발굴하는 등 연구 성과 창출
 - * 세계 최고 기술보유국(미국)과의 기술격차 감소(('10) 9.8년 → ('16) 7.2년)
 - (한계) 연구 지역이 북극저위도 해역, 남극 연안에 국한되어 있고,
 기초연구에 대한 투자 비중이 높은 상황
 - 아라온호의 남·북극 동시 투입으로 **연구운항일수**가 **부족**하며, 남·북극을 포괄하는 **기본법**, **기본계획**이 **부재**하는 등 **제도적 기반 미흡**

3. 추진전략

[] 극지과학연구 성과 제고

- (국민체감형 연구 확대) 남·북극 고온현상으로 인한 한반도 이상 기상 예측*, 해수면 상승 분석** 등 기후예측시스템 구축
 - * 북극 기후 변화에 기인한 한반도 재해기상 모델링 시스템 개발('20~'22)
 - ** 서남극 스웨이트 빙하 돌발 붕괴가 유발하는 해수면 상승 예측('19~'22)
- (실용화 연구 확대) 극한지에서 운용 가능한 첨단 기술(로봇, 통신, 데이터처리기술)*을 개발(~'25)하고 극지연구 분야 장비 개발 확대
 - * 다부처특위에서 공동기획 사업에 최종 선정('19.2)되어 해수부, 과기부, 산업부 참여
 - 극한 환경에서 생존하는 극지 생물의 유전자원을 활용하여 의약 소재* 및 얼음특성을 활용한 신소재 개발 등 실용화 연구를 추진
 - * 항생제 후보물질 개발(~`24), 항치매 치료제 실용화 연구(~`24)
- (新 비즈니스 발굴) 북극항로 활성화에 대비한 북극 원주민과의 협력 강화* 및 북극해 수산*·해저자원 조사 등 과학 연구 수행
 - * 미래 우호세력 형성을 위한 북극 원주민 장학지원 사업 신규 추진('21~)
 - ** 북극해, 인근 해역의 연간 어획고는 전 세계 수산물의 37%를 차지하며, '북극해 공해 비규제어업 방지협정'에 따라 과학적 기여에 비례해 향후 수산자원에 대한 영향력 확보 가능

② 미지의 극지 과학영토 확대

- (북극 고위도 진출) 미지·미답 영역인 북극 중앙공해 진출을 위해 강화된 쇄빙능력을 가진 차세대 쇄빙연구선* 확보(~'26, 예타 추진 중**)
 - * 1.5m/3노트 / 3,250억 / 15,450톤 / LNG·디젤 엔진 장착
 - ** 예타 신청('20.8) → 예타 조사 적합 사업 판정('20.9) → 본 예타 수행('20.10~'21.4)
 - 차세대 쇄빙연구선을 활용하여 **북극해 기반 국제공동연구**(생물관측, 기후생태계관측 등)의 참여를 **확대**하고 선도 프로젝트 발굴
- (남극 내륙연구 확대) 독자적 내륙루트(K-Route) 개척(~'22)을 통해 최적연구지점 확보 및 극한기술 개발, 천문관측 등 **다학제 연구 추진**
 - * 고단열 컨테이너 및 크레바스 도하용 브릿지 개발, 남극내륙 태양방사선 측정 장비 운영 등

③ 극지과학 개방형 협력체계 구축

- (개방형 연구체계) 산·학·연의 현장 연구 수요를 반영*하기 위한 국지 인프라 공동활용위원회를 구성하여 인프라 개방성 확대 추진
 - * '21년 아라온호 공동활용 수요조사 결과 46개 과제 접수, 8개 지원사업 선정
- (인프라 개방) 연구 실험공간 제공을 위한 '국지환경 재현 실용화 센터*'를 건립하고, 통합 정보플랫폼 구축을 통해 데이터 접근성 제고
 - * (기간/위치/내용) '19~'22 / 인천 송도 / 극지환경 재현 공간, 극지시료 등 제공
- (국제 거버넌스) 러시아, 캐나다 등 북극권 국가와의 협력 의제를 지속 발굴하고 덴마크, 중국 등 극지협력 MOU 체결 추진
 - * 외교부 북극협력대사를 수석대표로 하는 우리나라-북극권 6개국 간 양자 정례회의(연 1회)
 - 북극권 국가들과의 정치, 경제, 과학 등 분야별 협력의제 발굴 및 성과 공유를 위한 **북극협력주간 개최**(매년)
 - * '20년 북극협력주간(12.7~11/부산)은 '포스트 코로나 시대 북극협력'을 주제로 개최되며, '한-러 수교 30주년'을 맞이하여 러시아 관련 특별 세션 운영 예정

4 극지과학 발전 지원기반 구축

- (인적 역량 강화) 극지 연구자 양성을 위한 극지과학 석박사 과정 (UST) 및 학·연 극지연구 진흥프로그램(PAP) 등 인력양성 프로그램 확대
 - 다양한 산·학·연의 연구진이 극지 자원을 활용한 연구에 참여할 수 있는 자유공모과제(Open innovation)* 사업 신규 추진
 - * 연구자들이 창의적인 연구주제를 제안하고 평가를 통해 지원받는 자유 공모형 사업
 - 미래 인력 양성을 위한 교육프로그램 개발·제공하고 극지체험 전시회, 토크콘서트 등 극지 대중 인식제고를 위한 홍보 강화
- (제도적·정책적 기반 강화) 남·북극에서의 과학연구 및 산업 육성 등 종합적 정책 지원을 위한 '극지활동진흥법*' 제정 및 기본계획 수립
 - * (주요내용) 기본계획 수립, 연구개발 지원, 북극 산업 진흥, 전문인력 양성 등
 - 체계적인 극지활동 진흥을 위한 해수부 내 **극지전담조직**을 신설하고 **극지연구소 성과 강화**를 위한 극지연 기능 재정립 추진

I. 추진배경 1
Ⅱ. 국내·외 현황2
Ⅲ. 미래 발전전략 9
Ⅳ. 추진과제 11
1. 극지과학연구 성과 제고11
2. 미지의 극지 과학영토 확대 16
3. 극지과학 개방형 협력체계 구축 18
4. 극지과학 발전 지원 기반 구축 21
Ⅴ. 추진일정 23

Ⅰ. 추진배경

- □ 극지는 기후변화의 영향을 가장 빠르게 받아들이는 한편, 전 지구적 기상이변, 해수면 상승* 등을 초래하는 '기후변화의 종착지이자 출발지'
 * 최근 23년 간('92년~'14년) 7.6cm 해수면 상승('15, NASA)
 - 특히, 북극의 변화는 '18년 전례없는 한파와 폭염*, '20년 역대 최장 기간의 장마 등 한반도 이상기상 현상과 직접적으로 관련
 - * 북극 제트기류 약화의 영향으로 사상 최장의 여름철 폭염일수(39.3일/평년 14일)를 기록하는 등 역대 최고 더위 발생
- □ 한편, 온난화에 따른 극지 빙권의 감소는 **극지의 경제적 이용·개발** 가능성에 대한 기대를 높이며 지속가능한 이용에 대한 논의 촉발
 - * (남극) 석유 450억 배럴, 석탄 1,500억톤 매장 추정(극지연구소) / 크릴 등의 수산 자원 7천만톤 추정(국립수산과학원) (북극) 전세계 미개발 석유 및 천연가스의 약 25% 부존 추정(미국지질연구소)
 - 북극은 북극경제이사회('14) 출범으로 북극개발이 가시화되고 있으나, 북극해중유사용금지협약* 등 환경 규제도 강화되는 추세
 - * '24년부터 북극해에 항해하는 선박의 중유 사용과 운반을 금지하는 조치(IMO)
 - 남극은 남극조약에 따라 자원개발이 금지되고 있어, **남극 국제** 거버넌스 내 영향력 확보를 위해서 과학적 기여도 제고가 필수적
 - 이에 따라 각 국은 남·북극 자원 선점을 위해 국가차원의 전략을 수립하고 연구개발 투자를 확대하는 등 영향력 확보 위해 노력 중
- □ 우리나라는 **극지연구소**를 설립('04)하고 남·북**극 과학기지, 쇄빙** 연구선(아라온호) 등 연구인프라를 기반으로 극지연구 진행 중
 - 남·북극 과학기지를 모두 보유한 8번째 국가*로서 외래생물종 대응 국제공동연구를 주도하는 등 극지과학 분야에서 입지를 지속 확장
 - * 미국, 영국, 러시아, 중국, 이탈리아, 노르웨이, 폴란드
 - 다만, 최고 기술보유국(미국) 대비 **기술격차는 약 7.2년**('16)으로 극지 과학기술 **최고 그룹 진입**을 위한 한단계 도약이 필요한 시점
 - ⇒ **극지연구 혁신을 통한 도약**을 위해 "극지과학 미래발전전략" 수립 필요

Ⅱ. 국내·외 현황

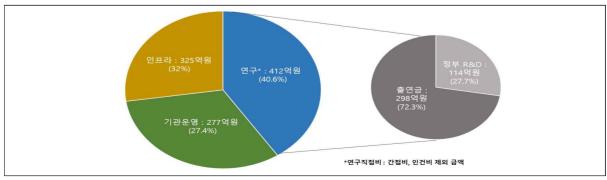
1 극지과학연구의 국제동향

- ◈ 남·북극 국제공동연구가 강화되는 한편, 국제적 경쟁도 심화
- □ 남극 내 국제공동연구 활성화 및 영향력 강화 노력 지속
 - 「남극조약 환경보호 의정서」('91)에서 남극 자원개발, 군사적 행위 등을 금지하고 있어, **과학연구**를 통한 영향력 확대^{*} **경쟁 심화** 추세
 - * 향후 남극 자원개발 등이 이루어질 경우 남극 과학 연구에 대한 기여도를 통해 국가별 개별 기준을 설정할 것으로 예측
- □ 북극권 협력 활성화 및 진출 경쟁 심화
 - 북극 영유권 확보를 위해 북극권 국가 간 영향력 확대 경쟁이 심화 되고, 미래 자원 확보를 위한 비북극권 국가의 진출 시도 확대
 - 러시아, 캐나다, 덴마크는 북극점 근방 영유권(로모노소프 해령) 주장을 뒷받침하기 위해 북극점 근방 해저지질 탐사 등을 경쟁적으로 추진
 - 중국, 독일 등 비북극권 국가들도 북극항로, 자원 확보 등을 위해 연안국에 인프라 설치, 쇄빙선 추가 건조 등 진출 역량 강화
 - 북극권 과학연구는 기후변화에 따른 북극 환경변화에 대응하고 지속가능한 이용을 위한 과학적 근거 확보를 중심으로 전개
 - 이와 관련, 독, 미, 영, 한 등 **20개국**이 참여하는 **북극해 환경변화** 관측을 위한 공동연구 프로그램*(MOSAiC)이 진행 중('19~'20)
 - * 독일(AWI) 쇄빙연구선(Polarstern)호를 투입하여 북극해를 무동력으로 표류하면서 환경 변화를 종합적으로 관측하는 북극권 최대 국제공동연구
 - '북극 중앙공해 비규제어업협정*' 체결('18.10) 이행을 위한 공동 연구모니터링 활동도 활발히 전개
 - * 북극해 해양생태계 보전 및 지속가능한 어업을 목적으로, 미, 러, 한 등 10개국 체결, 협정해역 내 비규제 어업활동 유예, 공동연구모니터링 시행 등을 포함

● 미, 중, 러 등 주요국은 **국가차원의 지원** 및 투자 **강화**

- □ (미국) 극지연구 리더십과 영향력 강화를 위한 국가전략 수립
 - 남극점의 아문센-스콧기지, 세계 최대 규모의 남극 과학기지인 맥머도 기지 등 **선진화된 인프라***를 기반으로 전략적 연구** 추진
 - * 남극 과학연구 및 인프라 운영 등에 연평균 5,000억원 이상 투자(미국과학재단, NSF)
 - ** ①해수면 상승, ②남극 생명의 적응·진화, ③우주의 기원에 우선순위를 두고 연구 추진
 - 북극의 **9개 연구목표***를 설정('16/미국 국가과학기술위원회)하여 연구
 - * ①건강과 웰빙, ②대기, ③해빙, ④해양생태, ⑤빙하 및 해수면, ⑥영구 동토층, ⑦육상생태, ⑧해안지역 복원력, ⑨환경 관측·모델링
- □ (러시아) 극권 전략적 우위 확보를 위한 국가적 지원 강화
 - '북극 기본정책 2035'를 수립·발표("20)하고 빙판활주로 건설, 신규 쇄빙선 투입("20) 등 인프라 구축을 위한 투자에 박차
- □ (중국) 국가 차원의 대규모 인프라 확충과 협력이 필요한 북극권 국가에 대한 투자* 등을 통한 전략적으로 진출 기반 확보 시도
 - * 북극 연안 4개국(미 제외) 투자액은 '12~'17년 간 280조원에 달하며, 러시아 Arctic LNG-2 사업에 20% 지분을 보유, 그린란드 GDP의 11.6% 투자('12~'17)
 - '북극정책백서('18)'에서 자국을 근(近)북극권 국가로 규정하고,북극 탐사 및 연안국 인프라 투자 등을 통해 영향력 확대 추구
 - 남극 제5과학기지 건설을 추진('22년 준공 예정)하고, 북극 연구를 위한 쇄빙연구선을 추가 도입('19)하는 등 공격적 인프라 투자 확대
- □ (일본) 북극 거버넌스에서의 영향력 확대와 북극항로 등 북극 진출 경쟁력 강화를 위해 '북극정책 우선순위 3대 과제*를 제시('19)
 - * ① 북극항로 활성화 대응, ② 북극융복합사업(ArCS I) 후속사업 개발,
 - ③ 제3차 북극과학장관회의 개최('21/도쿄)

로마 우리나라 극지연구의 현주소

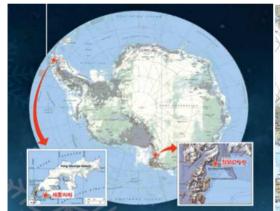

- ◆ 극지과학 분야 정부R&D 투자는 확대('20년 1,014억원)되는 추세이나, 전체 국가R&D 투자규모 대비 비중은 감소세
- □ 극지과학에 대한 연구개발 현황
 - (투자규모) 정부의 극지과학 R&D 투자 규모는 '20년 기준 1,014 억원*으로 전체 정부R&D 투자의 0.4% 수준
 - * 해수부 95.9%(972억원) 과기부 4.1%(42억원)
 - 극지과학분야 R&D 투자는 최근 10년간 **연평균 5.5%***로 **성장**하는 추세이나, 전체 **R&D에서 차지하는 비중**은 '17년 이후 **감소세**
 - * ('10) 594억원 → ('15) 934억원 → ('20) 1,014억원(최근 10년간 연평균 5.5% 성장)

- 분야별로는 과학기지·쇄빙연구선 등 인프라 운영 사업의 비중이 높은 편으로, 순수 연구개발 투자는 전체의 40.6%에 그침('20년 기준)
- * 총 1,014억원('20년): 연구 412억원(40.6%), 인프라 325억원(32.0%), 기관운영 277억원(27.4%)

< 정부 극지관련 R&D 투자 현황('20년) >

- (연구특성) 남극조약^{*} 및 북극권 연구환경^{**}에 따라 **극지자원의** 본격적인 이용·개발은 제한되어 기초연구 위주로 수행
 - * 남극의 평화적 이용과 환경보호를 목적으로 체결('59)되었으며, '48년까지 자원개발 금지 규정
 - ** 북극해는 연안국 관할권이 미치는 영해, EEZ와 공해로 구성되어 있으며, 북극 해빙(海氷)으로 인해 고위도 접근성이 매우 낮아 연구수행 범위와 시기에서 제약
 - (기초) 극지 해양생태계, 지질·고환경·진화, 기후변화·대기·빙권 등에 대한 관측·분석 연구 등 기초연구에 총 371억원 투자(90%)
 - (응용) 저온 정화기술 및 환경·에너지 신소재 개발, 극지 바이오· 유전체 실용화, 항공탐사 시스템 개발 등에 총 41억원 투자(10%)

< 극지 개관 >					
구 분	남 극	북 극			
지 리	- 남위 60° 이남의 육지·빙붕 및 수역과 그 상공 - 남극해로 둘러싸인 거대 대륙으로 평균 2,400m 두께의 빙상으로 덮임	- 북위 66.5° 이북의 육지·빙붕 및 수역과 그 상공 - 유라시아와 북미대륙으로 둘러싸인 북극해는 연평균 2~3m 해빙이 존재			
영 토	- 영토의 개념이 없음 * 남극조약 제4조(영유권 보류)	- 공해를 제외한 내륙·연안지역은 북극권국가(미, 캐, 덴 등 8개국)의 영토			
주 요 활 동	- 연구·탐사활동에 국한 * 남극조약 제1조	- 연구·탐사활동 및 북극권 개발			
영 향력 행 사	- 과학활동·연구성과에 따른 국제 발언력 획득	- 과학역량, 개발능력에 따른 해당 지역 국가와의 국제협력 참여			
협의체	- 남극조약	- 북극이사회			
이 슈	- 연구활동, 기후변화, 남극조업	- 자원개발, 북극항로			


○ (수행주체) 극지연구에는 과학기지, 연구선 등 대규모 인프라가 필수적인 관계로 정부출연연인 극지연구소를 중심으로 연구 수행

[참고 - 극지연구소 개요]

- (설립목적) 극지 지식 창출과 활용을 통한 국가 및 글로벌 현안 해결을 목적으로 설립(104년)
- ('20년 예산) 1014억(연구사업비 412억, 인프라운영비 325억 포함)
- (인력) 극지연구 전문 박사급 인력 146명(정규직 103명, 박사후 연구원 : 43명) 근무
- (기능) 극지관련 기초 및 첨단응용 과학연구 및 남·북극과학기지, 쇄빙연구선 운영 수행
- 최근 극지연구소는 **극지연구의 다변화를 위해** 연관 분야 **주요 대학과 네트워크를 구축**하고 협력을 확산하는 추세
- * `20년 현재 37개 대학, 2개 출연(연), 4개 기업과 협력 수행 중

□ 극지과학 지원을 위한 연구인프라 현황

- (남극) 세종* 및 장보고** 과학기지를 구축하였으며, 기지 운영 및 연구지원을 위해 월동연구대(기지별 18명 내외)를 운영
 - * (세종기지) 킹조지섬에 위치, 기후변화·대기·기상 관측·생물자원 등 연구('88.7. 준공)
 - ** (장보고기지) 동남극 테라노바만에 위치, 빙하·운석 등 대륙기반 연구('14.2. 준공)
- (북극) 하계기간(5~9월)을 중심으로 다산과학기지*를 운영하고, 연평균 60명 이상의 연구자 파견 및 연구활동 지원
 - * (다산기지) 노르웨이 니알슨 과학기지촌에 위치한 하계기지로, 북극해 해빙 분석 등 기후변화, 대기관측 및 생태계 모니터링 등 연구 수행('02.4월 개소)
- (쇄빙연구선) 7,507톤급 쇄빙연구선 아라온호('09년 준공)로 남·북극해 결빙해역 등 연구 및 남극 세종·장보고 과학기지 지원 수행

< 다산기지 >

< 아라온호 >

- □ 극지 활동 지원 제도·정책적 기반
 - (법적기반) 남극조약·남극환경보호의정서 의무수행^{*}을 위한 법적 기반 마련을 위해 '남극활동 및 환경보호에 관한 법률' 제정('04)
 - * 남극 환경보호를 위한 동식물 포획 금지, 특별보호 구역 운영, 모니터링, 폐기물 처리, 환경영향평가서 작성과 남극 활동 허가 및 금지행위 등 활동범위와 절차 명시
 - **(정책기반)** 관계부처 합동으로 **남극연구활동진흥기본계획**(법정계획, '17~'21)*, **북극활동진흥기본계획**(비법정, '18~'22)** 등 중장기 전략 수립
 - * 글로벌 환경변화 대응과 내륙진출, 미지·미답의 연구영역 개척, 안전지원시스템 고도화 등 지원기반 선진화 등을 목표로 3개전략 7개 추진과제 수립·시행
 - ** 북극권 경제협력 성과 창출, 파트너십 구축, 연구활동 강화 등 북극권에서의 가시적 성과 창출과 옵서버로서의 책임 이행 등을 위해 4대 전략 13개 추진과제 수립·시행

□ 주요 성과

- 과학기지(남극 2개, 북극 1개) 및 쇄빙연구선(아라온호)을 기반으로선도국에 비견되는 글로벌 수준의 극지연구 성과를 창출
- (연구 성과) 지속적인 정부의 연구투자에 힘입어 세계 최고 기술 보유국(미국)과의 기술격차 감소*
 - * 최고 기술보유국 대비 기술수준/기술격차: ('10) 53.3% / 9.8년 → ('16) 69.4% / 7.2년
 - ** 2016 해양과학 기술수준분석('16, 해양수산과학기술진흥원)
 - 극지과학 연구 패러다임을 주도하는 세계 최초 연구 성과* 지속 창출
 - * 북극 해빙 감소와 동아시아 지역 한파·폭설 관련성 세계 최초 규명('14), 남극 빙붕 붕괴 과정 세계 첫 규명('18), 남극 바다에서 신규 맨틀 세계 최초 발견('19) 등
 - 극지생물자원을 활용한 **바이오 분야** 실용화 연구에서도 혈액동결 보존제, 당뇨 치료물질 개발 등 가시적인 성과
 - * 남극 식물 유전자 활용 냉해방지작물(벼) 개발('15), 남극 해양미생물 활용 혈액 동결보존제 개발('18), 남극 지의류 활용 '당뇨 치료물질' 개발 및 기술이전('19)
- (연구 역량) 극지연구소는 '20년 'Nature Index'* 평가에서 125위로 전세계 극지연구기관 중 독일, 영국 연구소에 이어 3위 차지**
 - * 저명 학술지 'Nature'는 전세계 연구기관, 대학, 기업 등의 연구성과를 분석해 매년 발표
 - ** 국내 주요 출연연구기관을 제치고 지구·환경과학 분야 국내 2위 차지
- (국제 거버넌스) 남·북극에서의 국제 거버넌스에 참여하여 주요 의제 선정과 협의를 주도할 수 있는 위상 확보
 - (남극) 남극조약 가입('86) 후 세종과학기지 준공('88)을 통해 협 의당사국* 지위를 획득('89년)
 - * 과학기지 설치, 탐사대 파견 등 실질적 과학연구를 수행하고 있는 가입국으로서 남극 관련의제를 입안·심의할 권한을 가짐
 - (북극) '10년 이후 아라온호 북극해 연구탐사 실적을 바탕으로 북극이사회 정식옵서버* 지위 획득('13년)
 - * 북극이사회 회의, 실무작업반 등에서 의견 개진, 사업 제안이 가능하여 북극권 이슈에 대한 자국 입장 반영과 연구그룹 참여를 통해 정치·과학적 영향력 확대 가능

□ 반성

- ◆ 극지연구에 대한 투자가 확대되고 있으나, 국민이 체감하는 성과가 부족하고, 제한적인 인프라와 제도적 기반이 미흡
- (연구성과) 최근 10년간 1조원이 투자되었고 국제적으로 인정받은
 연구 성과에 비해, 국민이 체감하는 성과는 부족
 - * 극지(연) 외부 전문가(206명) 대상 조사 결과 '극지활용 산업화 진흥'을 극지연의 중요 기능으로 뽑았으나, 평가 항목 중 산업화 성과가 가장 미흡한 것으로 평가(`18, 과학기술정책연구원)
 - 최근 이상기후 현상에 대한 국민적 관심에 비해, 한반도 이상기후 예측기술 확보 등 가시적 성과 창출은 미흡
 - 특히, 기초연구 투자 비중(90%)이 높고, 경제적 성과로 직접 연결 될 수 있는 실용화 연구 비중(10%)이 낮은 상황
 - 과학연구의 **극지연구소 의존도**가 지나치게 **높은 점**을 극복하고 **연구저변 확대**를 위해 융복합 공동연구 확대 등 적극 추진 필요
- (연구인프라) 이상기후 연구 등을 위해 북극 고위도 연구가 필요 하나 현재 인프라로는 연구에 한계
 - 특히, 쇄빙연구선 등 연구인프라는 대규모 투자가 필요해 **민간 투자에 한계**가 있어 **정부의 적극적인 투자**가 **절실**한 상황
 - 극지연구소 외의 일반 **연구자의 연구 인프라**에 대한 **접근성이** 미흡하다는 점도 지속적으로 지적
- (제도기반 부족) 극지과학의 지속적 발전을 위한 제도적인 지원 체계가 미흡하고 차세대 인재 양성을 위한 지원·투자 부족
 - 남극과 북극을 모두 아우르며, 과학연구활동 뿐만 아니라 다양한 경제활동을 안정적으로 지원할 수 있는 법적 근거 필요
 - * 현행 극지관련 법률은 「남극활동 및 환경보호에 관한 법률」이 유일하나 남극조약의 이행을 위한 활동 허가 및 환경보호 등 규제 위주의 한계
 - ⇒ 극지과학연구의 혁신적 성과 창출을 위해 관련 유·무형의 지원 기반 구축을 포함한 종합적 발전 전략 수립 필요

Ⅲ. 미래 발전전략

1 기본 방향

―< 미래 현안 해결을 주도하고 국익을 창출하는 극지선도국 도약 >-

극지과학 선도국 추격형 연구

기초과학 중심의 현상 규명형 연구 수행

보유인프라 주변에서의 한정적인 연구 수행

전문기관 중심의 연구 수행 체계

단기 현안문제 해결형 정부지원

극지과학 뉴패러다임을 주도하는 선도국가

- 국가현안과 연계된 문제해결형 연구 수행
 - 극지 모빌리티 기반의 연구 지역 확장
- · 개방·협력에 기반한 극지과학 생태계 조성
- 미래 먹거리 창출을 위한 미래 기반 투자 강화

□ 국가·사회의 기대에 부합하는 극지과학연구 성과 창출

- 기후변화 대응 등 성과를 체감할 수 있는 분야에서 국민의 기대 수준과 국제적 위상에 걸맞는 연구 성과 추구
- 산업적, 경제적 활용 가능성이 높은 실용화 연구를 강화하고, 북극 항로 등 新비즈니스 기회에 대비하는 연구활동 확대

□ 과학영토 확대를 위한 미지·미답지 진출 확대

- 선진국이 주도하고 있는 **미지·미답지의 공격적 진출**을 통해 극지 과학연구의 **블루오션을 개척**함으로써 **극지과학기술 최고그룹 도약**
- 미답지 진출 및 과학연구에 필수적인 **쇄빙연구선 등 연구인프라**를 확충하여 **국제 수준의 연구 경쟁력 확보**

□ 극지과학의 지속 발전을 위한 정부지원체계 강화

- 극지과학연구의 지속적 발전을 위해 연구성과 공유, 연구인프라
 공동활용 등을 통한 연구생태계 구축
- 안정적 정부 지원을 위한 **법적·제도적 기반**을 **강화**하고 극지 관련 전문인력 양성 등 다각적 지원 추진
 - * 관계 전문가들은 선진국과의 극지해양과학분야 기술격차의 원인으로 연구개발부족, 연구개발 인프라 취약을 주요 원인으로 지적('16, 해양과학 기술수준 분석)

비전

미래 현안을 해결하고 국익을 창출하는 극지과학 연구

정책 목표

- ◆ 국민이 체감할 수 있는 연구성과 창출
 - * 글로벌 '최고그룹' 수준 도약 (2030년 최고기술국 대비 85% 달성)
- ◈ 신 연구영역 확보를 위한 미지의 극지 공간 개척
 - * (남극) 세계 7번째로 남극점까지 내륙 육상루트 개척
 - * (북극) 북위 80° 이상 고위도 북극 중앙공해 진출
- ◈ 미래 극지과학 수요 대응을 위한 협력체계 및 지원기반 구축
 - * (협력체계) 극지연구 참여 개방 및 국제 협력 주도
 - * (지원기반) 미래 극지 인력 확보 및 극지활동진흥법 제정

추진 전략

추진 과제

전략 1

극지과학연구 성과 제고 1-1. 국가사회 현안 해결을 통한 국민체감형 연구 확대

1-2. 극지자원 활용 실용화 연구 확대

1-3. 극지 신비즈니스 발굴

전략 2

미지의 극지 과학영토 확대 2-1. 미래 연구경쟁력 제고를 위한 북극 고위도 진출

2-2. 첨단 거대 과학 선도를 위한 남극 내륙 연구 확대

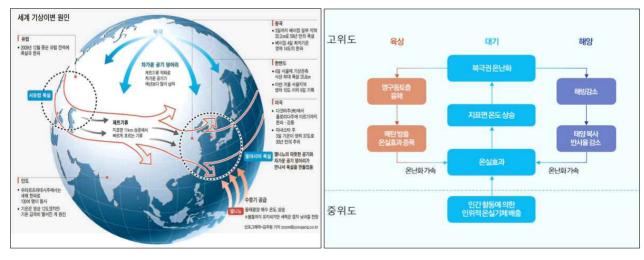
전략 3

극지과학 개방형 협력체계 구축 3-1. 연구성과의 질적 혁신을 위한 개방형 연구체계 구축

3-2. 국제 거버넌스 주도적 참여

전략 4

극지과학 발전 지원기반 구축 4-1. 차세대 극지연구 인적 역량 강화


4-2. 극지연구에 대한 제도적·정책적 기반 강화

\mathbb{N} . 추진 \mathbf{M}

전략 1_ 극지과학연구 성과 제고

1-1. 국가사회 현안 해결 등 국민체감형 연구 확대

- ◈ 한반도 기후변화, 남극 환경 보전 이슈 대응 등 국민의 관심과 공감대가 높은 분야의 연구를 집중적으로 확대
- □ 기후·환경변화 전망시스템 구축을 통해 한반도 이상기후 예측
 - 북극권 고온 현상과 빙권 감소가 한반도 이상기상 현상에 미치는 영향을 분석하고 이에 근거한 예측시스템 구축 추진

- < 북극 기후가 중위도 국가에 미치는 영향 > < 북극의 주요 기후 피드백 매커니즘 작동 원리 >
 - (관측 및 영향분석) 환북극 관측 거점을 구축하고 인공위성*을 기반으로 환경인자 빅데이터 확보
 - * 인공위성 원격탐사기술을 활용한 북극 해빙지도를 작성('20~'22) 및 북극 동토-대기-생태계 환경기반 종합 모니터링 및 피드백('21~'24)
 - (예측모델링) 북극권 육상 해양(빙권+수권) 대기 등 지구시스템 구성 요소들의 상호작용을 반영한 예측모델 구축
 - * 북극 기후 변화에 기인한 한반도 재해기상 모델링 시스템 개발('20~'22)

- 서남극 스웨이트 빙하 붕괴에 따른 해수면 변동과정 원인규명,
 온난화 감시체계 구축, 극지역 기후변화 원인 진단 등 추진
 - * 서남극 스웨이트 빙하 돌발 붕괴가 유발하는 해수면 상승 예측('19~'22)
 - ** 남극에서 가장 빠른 속도로 사라지고 있는 서남극 스웨이트 빙하는 한반도 전체 크기와 비슷한 면적(19만km²)으로, 녹을시 약 65cm의 해수면 상승이 예상

□ 극지 환경 보전 이슈 대응을 통한 글로벌 위상 제고

- (환경보호 연구) 남극해양보호구역 생태계 연구, 남극특별보호 구역 관련 연구 확대* 등 극지 환경 보전 이슈 해결에 기여
 - * 남극특별보호구역 지정 제안국은 해당지역의 모니터링, 생태계 보호를 위한 활동 제한 등 관리계획을 수립·이행하고 남극조약협의당사국회의(ATCM)에 결과 보고를 수행
 - 기 지정('09.6)된 세종기지 인근 특별보호구역 모니터링을 고도화 하고 신규 제안('19) 구역(장보고기지 인근)의 지정 승인 추진(~'21)
 - * 세종기지 인근 펭귄마을 기초조사 연구를 바탕으로 남극특별보호구역 지정(`09), 현재 장보고기지 인근 우리나라 두 번째 보호구역 지정 추진(`19~)

1-2. 극지 자원 활용 실용화 연구 확대

- ◆ 국지자원의 산업적, 경제적 활용 가능성을 높이는 실용화 연구 강화를 통해 새로운 성장동력 발굴
- □ 극한지에서 운용 가능한 첨단 기술 개발
 - (로봇·통신) 극한지 지형 정보 수집을 위한 무인 이동로봇을 개발* 하고 극지에서의 통신을 위한 **극한지 무선 통신** 기술 개발**
 - * 극한지 탐사용 로봇시스템 및 운용기술 개발('21~'25 / 산업부)
 - ** IoET를 위한 극한지 통신기술개발('21~'25 / 과기부)
 - (관측기술) 극한지 사물 인터넷, 모바일 플랫폼 기술과 연계하여 극한지 관측 데이터 처리 인프라 및 정보 분석 기술개발
 - * 극한지 관측 및 정보처리 기술 개발('21~'25)

□ 극지자원을 활용한 신소재 개발 연구 지원

- (바이오) 극한 환경에서 생존하는 극지 생물의 유전자원을 활용 하여, 차세대 항생제* 및 항치매 치료제 개발** 등 의약소재 개발
 - * 극지유래 생물자원을 활용한 항생제 후보물질 개발(~'24)
 - ** 극지 지의류 유래 항치매 치료제 실용화 연구(~'24)
 - 극지에서 확보한 생물시료의 산업적 활용을 위한 생물자원 확보 전략 수립 및 '극지생물 유전체 데이터베이스' 고도화
 - * 극지 유용유전자 발굴을 위한 기능유전체 연구(~'22)
- (저온기술) 얼음 특성을 활용한 신소재 개발, 저온화학 기술을 활용한 오염정화 기술 등 실용화 연구 실시
 - * 얼음 특성을 기반으로 합성 신소재 개발(~'25)
 - ** 저온화학 기반 오염물질 제거 기술을 활용한 동결수처리 공정기술 개발(~'25)

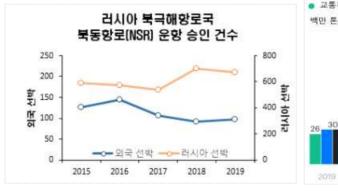
□ 新성장동력 확보를 위한 유망기술 발굴·활용체계 활성화

- (기술사업화 지원) 실용화 연구성과의 파급력 극대화를 위해 특허 활용 체계* 강화, 우수기술 설명회** 등 기술마케팅 연계 프로그램 지원
 - * 특허의 기술사업화 가능성이 높아지도록 특허별 활용 가치 평가를 실시하고, 수요자(기업)가 이용하기 편리하도록 상호연관된 특허를 그룹화하는 등 전략적 특허관리 실시
 - ** 항치매 치료제, 저온활성 단백질 분해효소, 화장품 등 연구 성과의 활용성이 높은 분야를 대상으로 성과 수요기업 발굴 등을 위한 기술 마케팅 체계화
- (공동연구) 극지연구분야 신산업(기술) 발굴 및 장비·기술 개발을 위한 산·연 공동연구 프로그램(Polar Industrial Program)* 확대 추진
 - * PIP(Polar Industry Program) : 산·연 극지공동연구프로그램으로 연구 수행에 필요한 장비를 국내 기술로 개발하고 기술이전 등을 통한 사업화를 지원

< PIP 사업 상업화 및 연구 활용 >

구분	주요 내용
국지방 적응형 환경 통합 계측 시스템('14)	· 중소기업 기술이전을 통해 매출액 발생
국지빙하구조 탐사 레이더 ('17)	· 빙하구조 분석 레이더의 국산화 성공 (`18년부터 남극 현장에 투입되어 시험 중)

1-3. 극지 신비즈니스 발굴

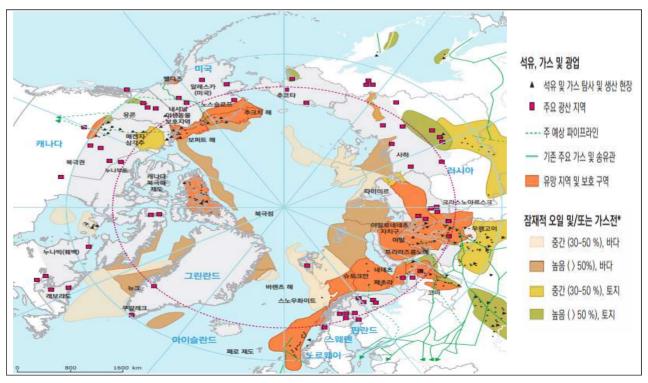

- ◆ 북극항로 개척, 수산자원 확보 등 新비즈니스 기회에 대비하는연구개발 및 연구조사·탐사 활동 확대
- □ 북극항로 활성화에 대비한 연구개발 및 국제 거버넌스 구축

< 북극항로 전망 >

- ◎ (현황) '19년 기준 물동량은 3,083만 톤('18년 1,968만 톤)으로 빠르게 증가하고 있으며, 대부분 러시아 북극지역의 자원 수출용으로 활용
 - 중국과 일본은 러시아 등 북극권 국가들과 북극 자원개발과 북극항로 이용을 연계한 협력사업(북극 항로를 통한 러시아 LNG 수입 등)을 적극 추진 중
- ◎ (전망) 북극 해빙의 감소로 '30년 기준 연중 항해가 가능할 것으로 예상 되며, 물동량은 '24년까지 8,000만 톤으로 증가할 것으로 전망

< 북극항로 운항 승인 건수 >

< 물동량 전망(2020~2024) >

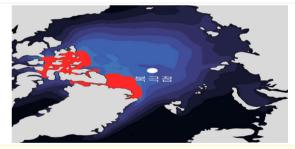

출처: 제8회 북극항로 국제세미나('19.12), Mikhail Grigoryev, 2020 북극포럼

- (기술개발) 극한 환경에서의 안전성 및 운항 효율성 확보를 위하여 무인, 스마트 운항 및 관제기술 개발 추진
- (국제협력) 국적선사 진출 교두보 확보를 위해 북극 연안국 협력 사업 및 선·화주 지원* 확대
 - * 북극해항로 통과 입출항 선박 항만시설사용료(선박 입출항료, 정박료 등) 감면
 - 북극항로의 60%를 차지하는 러시아와의 협력 강화 및 미래 우호 세력 형성을 위해 북극 원주민 장학지원 사업 등 추진

- (인력양성) 북극항로 상업화에 대비하여 북극항로 운항기술 및 노하우 확보를 위한 극지운항 인력(선원, 연구원 등) 양성* 지속 추진
 - * ('14) 7명 \rightarrow ('15) 20명 \rightarrow ('16) 30명 \rightarrow ('17) 30명 \rightarrow ('18) 34명 \rightarrow ('19) 20명

□ 과학기술 기반 다양한 비즈니스 협력 모델 발굴

- (수산자원) 중앙 북극해 공해(CAO)의 조업량(Quota) 설정 참여를 위해 북극해 수산자원 조사 및 미래 변동 예측 연구 추진
 - * 북극해 및 인근 해역의 연간 어획고는 약 4,600만톤으로 전 세계 수산물 생산량의 37%
 - '북극해 공해 비규제어업 방지협정*'에 따라 향후 과학적 기여에 비례해 영향력 확보가 가능하여 서명국간 공동과학조사 시행
 - * 중앙 북극 공해지역의 해양생물자원을 보존하고 지속가능한 이용을 위해 북극 공해의 조업 활동을 유예하는 협정(미, 러, 덴 등 10개국 참여)
- (해저자원) 북극해 미답해역에 대한 선제적 해저탐사 수행 및 해저자원 부존정보* 선점 확보 추진
 - * 전 세계 미발견 석유의 13%(약 900억 배럴(bbl)), 천연가스의 30%(47조㎡), 가스 하이드레이트의 20%(4천억톤)가 존재하는 것으로 추정



출처:Nordregio, 2015, KMI 인포그래픽 제28호

2-1. 미래 연구경쟁력 제고를 위한 북극 고위도 진출

- ◈ 급격한 해빙[解氷]으로 접근이 가능해진 북극 중앙공해 진출을 위한 인프라(차세대 쇄빙선) 확보 및 국제 공동 프로젝트 선도
- □ 강화된 쇄빙능력을 갖춘 차세대 쇄빙연구선 확보
 - (쇄빙연구선 건조) 아라온호보다 강화된 쇄빙능력(1m→1.5m) 및 친환경성을 갖춘 차세대 쇄빙연구선 건조 추진(~'26/예타 중)
 - 고위도 해역의 안전·환경조건에 대응하기 위해 향상된 내한성능 및 안전설비를 보유한 **친환경 선박**(LNG-디젤 이중엔진)으로 건조
 - * (현황) 아라온호의 쇄빙능력 한계(1m/3노트)와 남·북극 동시운항으로 인한 비효율성 등으로 북극 고위도 연구, 다양한 연구수요 충족이 어려운 상황
 - ** (기대효과) 연구가능한 해역범위와 연구기간(3→7개월) 확대
 - < 쇄빙능력별 접근 불가능 해역(붉은색) 비교('30.11월 기준 전망치) >

< 아라온호(1m): 68% 운항가능 > < 차세대 쇄빙연구선(1.5m): 94% 가능 >

○ (국제공동연구 수행) 차세대 쇄빙연구선을 활용한 북극해 국제 공동연구 참여 확대 및 선도 프로젝트 추가 발굴

< 북극해 국제공동연구 참여 현황 >

프로그램명	기간	주요 내용	
태평양북극	'14~계속	·동시베리아해, 척치해 지역 기후·생태계	
기후생태계관측(PACEO**)		공동 관측 수행(한·미·일 등 6개국)	
북극해통합 동 시조사	'20~'21	◦ 환북극해 기후변화·해양환경·생태계 동시	
(SAS***)	20 21	현장조사(한·미·영 등 9개국)	

^{*} Pacific Arctic Climate Ecosystem Observatory, ** Synoptic Arctic Survey

2-2. 첨단 거대 과학 선도를 위한 남극 내륙 연구 확대

- ◈ 6개국*이 주도하는 남극 내륙 연구 진출
 - * 미국, 러시아, 프랑스, 이탈리아, 일본, 중국 등 내륙 기지 보유 국가
- □ 독자적 남극 내륙루트(K-루트) 개척
 - **(K-루트)** 장보고과학기지부터 남극점까지 총 3,000km 내륙루트 확보('17~'22)로 세계 7번째 남극내륙을 연구하는 국가로 도약
 - 심부빙하, 빙저호 등 본격적 남극내륙 연구 수행을 위한 **안정적** 물자 보급 및 최적 연구 지점을 포함한 육상 루트 확보

- (연구거점) 남극내륙의 특성을 활용한 극한기술 개발, 천문관측 등 다학제 연구 지원을 위한 이동식 현장연구 캠프 설치
 - * 고단열 컨테이너 및 크레바스 도하용 브릿지 개발, 남극내륙 태양방사선 측정 장비 운영 등 다학제 연구 추진
 - ** 남극내륙연구를 위한 내륙진출루트 개척과 지원시스템 구축(~'25)
- □ 남극 내륙연구 거점을 활용한 국제공동연구 선도
 - 한-영 공동 세계 최초 2,000m급 남극 심부 빙저호 청정멸균열수 시추기 개발 등 국제공동연구 추진
 - * 남극 David 빙하 빙저호 열수시추 기술 개발(~'25)

3-1. 연구성과의 질적 혁신을 위한 개방형 연구체계 구축

● 과학기지, 쇄빙연구선 등 연구인프라 및 연구자원, 정보의 공유· 개방을 확대하여 극지 과학연구에 대한 접근성 제고

□ 극지인프라 공동활용 확대

- (인프라 개방) 산·학·연의 극지연구 참여를 지원하기 위해 극지 인프라 활용수요를 조사하고, 극지연구 인프라 활용계획 수립
- (인프라 고도화) 범부처 및 산·학·연의 현장 연구 수요를 반영한 중장기 인프라 확보·고도화 계획 수립('22~)
 - 남극 과학기지를 활용한 융복합 공동연구과제 수행 촉진을 위해
 모듈형 연구시설 지원체계* 구축 추진('21~'24)
 - * 연구 특성, 규모 등에 따라 모듈형으로 제작된 연구실 등을 시즌별로 변경·설치
- (추진체계) 과학기지, 쇄빙연구선 등 인프라의 활용 확대를 위해 산·학·연 전문가가 포함된 '극지 인프라 공동활용위원회'* 구성
 - 매년 인프라 활용 수요를 공모를 통해 지원대상 과제 선정 추진
 - * 쇄빙연구선(아라온호) 공동활용 수요조사('20)에 따라 신규 연구수요 46건 중 8건 선정・반영

< 극지인프라 공동활용위원회 구성(안) >

- □ 극지 자원 및 극지 정보의 공동 활용 제고
 - (실용화 센터) 극지 환경을 재현한 실험 공간과 빙하·운석 등 극지 특수시료를 제공하는 '극지환경 재현 실용화 센터' 건립
 - * (기간/위치/내용) '19~'22 / 인천 송도 / 극지환경 재현 공간, 극지시료 등 제공

<	주요시	석	민	유연	볏밧	아	>
•	1		ᆽ	(9		

구 분	대상자	운영 방안
Incubating Center	산·학·연 연구자	◦전문 기술인력 양성 및 기술 산업화 지원
Experiment & Experience	산·학·연 연구자	∘ 극지환경, 극지시료를 통한 연구·장비 실험 지원
Open Lab	학생, 교사 등	∘ 극지과학 교육 및 실험 공간 지원

- (통합정보플랫폼) 한국극지데이터센터*와 남극데이터센터(국외)**가 자동으로 연동되도록 정보플랫폼을 구축(~'21)하여 데이터 접근성 제고
 - * 한국극지데이터센터(KPDC, Korea Polar Data Center) : 국내 극지 연구를 통해 획득한 식물표본, 미생물 등 데이터를 관리하는 극지연 운영 데이터 플랫폼
 - ** 남극데이터센터(AMD, Antarctic Master Directory) : 남극조약의 과학적 관측 자료 공유 의무에 따라 남극에서 수집된 연구 데이터 정보 등재(남극연구과학위원회 운영)
 - 기존 텍스트 기반 데이터를 시각화 기법을 적용하여 제공하고, 웹 기반의 데이터 신청 프로세스를 도입하는 등 수요자 편의성 제고

< 극지 통합정보플랫폼 >

3-2. 국제 거버년스 주도적 참여

- ◆ 극지연구 국제거버넌스 주도적 참여를 통한 협력체계 구축 및 글로벌 이슈 해결을 위한 의제 발굴 등 영향력 확대
- □ 극지권 주요국과의 양자 협력체계 구축
 - (북극협의회) 러시아, 캐나다 등 북극협의회*소속 북극권 국가와 협력의제를 지속 발굴하고, 극지협력 MOU 체결** 추진
 - * 외교부 북극협력대사를 수석대표로 하는 우리나라-북극권 6개국 간 양자 정례회의(연 1회)
 - ** 해수부-덴마크 고등교육과학부('21), 극지연-중국 자연자원부('21) 등 추진 중
 - (협력센터 활성화) 과학기지 관문지역(노르웨이, 뉴질랜드, 칠레)의 국지연구 협력센터를 기반으로 한 양자 협력연구 추진

< 협력센터 운영현황 >

센터명	지역	주요연구		
Incubating Center	노르웨이	스발바르 지역 쇄빙선 활용 지형변화 연구 ('17~'24)		
Experiment & Experience	뉴질랜드	∘ 남극 빅토리아랜드('20∼'22) 및 로스해 공동 연구('20∼'22)		
Open Lab	칠레	∘ 남극 킹조지섬 기반 육상·해양 생태계 및 고환경 연구('20∼'22)		

□ 글로벌 이슈 해결을 위한 의제 발굴

- (국제협의체 참여) 북극이사회*, 남극조약 협의당사국회의**에서의
 영향력 확대를 위해 참여 전문가 확대 및 보강
 - * 미국, 러시아, 덴마크, 노르웨이 등 8개의 북극권 국가로 구성('96년~), 우리나라는 중국, 일본 등과 함께 옵서버로 활동 중('13~)
 - ** 남극 과학연구활동에 실질적으로 기여한 협의 당사국(우리나라 포함 29개국)이 과학적 협력 증진, 생물자원 보존 등을 위해 개최하는 회의
- (북국협력주간) 북극권 국가들과의 정치, 경제, 과학 등 분야별 협력의제 발굴 및 성과 공유를 위한 북국협력주간 개최(매년)
 - * '20년 북극협력주간(12.7~11/부산)은 '포스트 코로나 시대 북극협력'을 주제로 개최되며, '한-러 수교 30주년'을 맞이하여 러시아 관련 특별 세션 운영 예정

4-1. 극지과학연구 인적 역량 강화

◆ 국지과학의 저변 확대를 위해, 전문인력 양성을 위한 전문교육및 국민적 관심 환기를 위한 학교·일반 교육 강화

□ 극지 전문인력 양성

- (과학연구인력) 국내 극지 연구자 양성을 위해 극지과학 석·박사 과정(UST) 및 학·연 극지연구 진흥프로그램(PAP)* 확대 추진
 - * PAP(Polar Academic Program) : 국내 대학 및 연구원을 대상으로 학·연 협력 융· 복합 연구 주제 발굴 및 수행에 대한 연구비 지원 프로그램
 - 다양한 산·학·연의 연구진이 극지 자원을 활용한 연구에 참여할 수 있는 자유공모과제(Open innovation)* 사업 신규 추진('21~)
 - * 연구자들이 창의적인 연구주제를 제안하고 평가를 통해 지원받는 자유 공모형 사업
- (국지정책 전문인력) 극지권 주요 국가의 극지정책을 연구하고 학술교류를 실시하기 위한 **극지 전문인력 양성사업^{*} 확대**
 - * 북극권(노르웨이, 러시아 등), 남극권(뉴질랜드) 대학 단기 해외 연수 프로그램('16~)
 - ** (기존) 노르웨이·핀란드·러시아·뉴질랜드 → (추가) 미국·캐나다·덴마크·스웨덴·호주 등

□ 미래 극지과학자 육성

- (청소년 교육) 국립과학관, 국립해양과학관 등과 연계하여, 찾아 가는 극지과학교실 등 다양한 교육 프로그램 개발·제공
 - 극지와 관련된 과학 지식 전파를 위해 **과학교사** 대상의 **직무연수** (극지아카데미, '15~) **확대** 실시
- (대국민 홍보) 극지에 대한 대중의 인식 제고를 위한 행사를 개최 하고, 극지 정보를 쉽게 접할 수 있는 온라인 사이트 운영
 - 체험전시회, 토크콘서트 등 개최를 확대하여 극지에 대한 **간접 체험** 기회를 제공하고, 온라인 웹진 발간 등 맞춤형·참여형 홍보 확대

4-2. 극지연구에 대한 제도적·정책적 기반 강화

◆ 극지과학연구 등의 안정적인 지원을 위해 관련 법령을 제정하고 지원조직을 강화하는 등 법적·제도적 기반 강화

□ 극지활동 지원을 위한 법적·제도적 근거 마련

○ (국지활동진흥법) 극지연구, 인력양성 등에 대한 국가 차원의 정책 수립 및 지원을 위해 「국지활동진흥법」 제정 추진(~'21)

< 법안 주요내용(안) >

- (기본계획 수립) 매 5년마다 '극지활동 진흥 기본계획' 수립·시행
- (국지활동 내실화) 연구개발, 기반시설 운영, 교육·홍보 등 기존 수행 중인 활동의 내실화 추진을 위한 근거 마련
- (국지활동 확장) 북극에서의 산업 진흥 및 전문인력 양성 등 극지에서 열릴 기회를 선점하기 위한 성장동력 육성
- (국지활동기본계획) 남·북극에서의 과학연구, 산업 육성 등의 종합 적인 정책지원을 위한 '극지활동 진흥 기본계획*' 수립**
 - * (주요내용) 추진체계·전략 수립, 극지인프라 설치·운영, 극지연구, 환경보호, 극지 연구기관·전문인력 양성·지원, 산업 육성 등
 - ** (극지 관련계획 수립 현황) 제3차 남극 연구활동 진흥 기본계획(법정, '17~'21), 제2차 북극활동 진흥 기본계획(비법정, '18~'22)

□ 극지 과학연구 지원을 위한 조직 역량 강화

- (국지정책 전담조직) 체계적인 극지 과학연구 및 북극 산업 육성을 위한 해수부 내 국지전담조직((가칭)극지정책과) 신설
- (국지연구소) 국지연구 전문 기관인 국지연구소*의 기능을 재정립 하고 연구 성과관리 체계를 구축하는 등 전반적인 혁신 추진
 - * 극지연구 개방형 협력체계 강화, 미답지 연구수행 강화를 위한 현장중심 지원체계 구축, 수요 맞춤형 정책지원 및 극지과학문화 확산체계 구축 등

V. 추진일정

	구분	추진부처	추진시기			
1. 극지과학연구 성과 제고						
1-1. 국민체감형 연구 확대	① 기후·환경변화 전망시스템 구축을 통해 한반도 이상기후 예측	해수부, 환경부, 기상청	~ '24			
	② 극지 환경 보전 이슈 대응을 통한 국가위상 확보	해수부	'19 ~			
1-2.	① 극한지에서 운용 가능한 첨단기술 개발	과기부, 신업부, 해 수 부	~ '25			
극지자원 활용 실용화	② 극지 자원을 활용한 신소재 개발 연구 지원	해수부	~ '25			
연구 확대	③ 新성장동력 확보를 위한 유망기술 발굴·활용체계 활성화	해수부	~ '24			
1-3. 극지	① 북극항로 활성화에 대비한 연구개발 및 국제 거버넌스 구축	해수부	'14 ~			
신비즈니스 발굴	② 과학기술 기반 다양한 비즈니스 협력 모델 발굴	해수부, 외교부	~ '25			
2. 미지의 극:	지 과학영토 확대					
2-1. 북극 고위도 진출	① 강화된 쇄빙능력을 갖춘 차세대 쇄빙연구선 확보	해수부	~ '26			
2-2.	① 독자적 남극내륙루트(K-루트) 개척	해수부	~ '22			
남극 내륙 연구 확대	② 남극내륙연구 거점을 활용한 국제공동연구 선도	해수부	~ '25			
3. 극지과학 :	개방형 협력체계 구축					
3-1. 개 방형	① 극지인프라 공동활용 확대	해수부	'20 ~			
연구체계 구축	② 극지 자원 및 극지정보의 공유 활용 제고	해수부	~ '22			
3-2. 국제	① 극지권 주요국과의 양자 협력체계 구축	해수부, 외교부	'17 ~			
거버넌스 주도적 참여	② 글로벌 이슈 해결을 위한 의제 발굴	해수부, 외교부	'16 ~			
4. 극지과학 발전 지원기반 구축						
4-1. 차세대	① 극지 전문 인력 양성	해수부	'21 ~			
극지연구 인적 역량 강화	② 미래 극지과학자 육성	해수부, 과기부	'20 ~			
4-2. 제도적·정책적	① 극지활동 지원을 위한 법적·제도적 근거 미련	해수부	~ '22			
제도적·정책적 기반 강화	② 극지 과학연구 지원을 위한 조직 역량 강화	해수부	'20 ~			

참고 1

북극 현황

- □ (물리 환경) 북위 66.5도 이북지역 또는 영구 동토층의 한계선을 지칭하고, 면적은 약 2,100만km²로서 지구 지표면의 약 6% 차지
 - 북극해*(약 1,400만㎞)는 세계 5대양의
 하나로 겨울철에는 얼음으로 덮이나
 여름철에는 30% 수준으로 축소
 - * 전체해역 중 82%가 연안국 영해 및 EEZ, 18%가 공해로 구성

< 북극 지역 >

- □ (현황) 러시아 야말 LNG 개발 및 후속 자원개발사업 확대, 노르웨이 북극해 개발 본격화, 알래스카 유전개발 요구 증대 등 경제환경 급변
 - * 북극은 미개발 자원의 보고로 세계 미발견 석유의 13%, 천연가스의 30% 매장(미국 지질조사국, '08년), 풍부한 광물자원 보유
 - 러시아 국내화물의 북극해 해상운송 물동량이 대폭 증가* 중이고,
 중국, 덴마크 등 해운국가의 북극항로 이용 준비** 본격화
 - * '17년 1천만톤으로 역대 최대치 기록. '18년 아말 LNG 운송 본격화 시 급격한 증가 예상
 - ** 中: '일대일로' 정책에 빙상 실크로드 도입, 덴: 상업 컨선 운항 추진('18, 머스크社)
- □ (거버넌스) 통일된 국제조약이 없고, UN해양법협약('94년 발효), 북극이사회('96년 설립) 등 다양한 규범과 협의체 존재
 - * 남극은 영유권 분쟁·광물자원 개발 금지, 평화적·과학적 이용만 허용(남극조약, '59년)

< 북극이사회 조직 구성 >

참고 2 남극 현황

- □ (물리 환경) 남극은 남극조약('61)에 따라 남위 60도 이남의 대륙과 주변을 감싸고 흐르는 남빙양(Southern Ocean)으로 구성
 - ㅇ 남극대륙의 넓이는 아시아, 아프리카, 남·북 아메리카에 이어 5번째로 큰 대륙
 - * 한반도의 약 60배(1.360만km²) 면적으로 평균 빙붕두께는 2.450m

< 남극 대륙 >

- □ (현황) 남극조약에 의한 평화적인 활용에 의거 과학연구를 중심으로 하고 있으며, 이빨고기, 남극크릴 등의 원양어업이 이루어짐
 - * 최근 해양보호구역(MPA) 지정 등으로 어업 규제 강화 추세
 - 남극 동·식물, 미생물을 활용한 유전자원에 대해 선진국 중심으로 화장품, 의약품 등 산업화를 추진 중
 - 에너지(석유, 석탄, 천연가스 등)와 광물(철, 구리, 니켈, 금, 은 등)이 대량 매장되어있으나, 채굴은 2048년까지 금지된 상태(남극환경보호의정서)
 - * (석유·천연가스) 남극 대륙붕 지역에만 최소 450억 배럴 / (석탄) 남극 횡단 산맥에만 최소 1,500억톤 매장 추정

□ (거버넌스) 남극조약 체제(Antarctic Treaty System)

제도

- 남극조약(Antarctic Treaty)
- 남극환경보호의정서
- 남극물개보전협약(CCAS)
- 남극해양생물자원보존협약(CCAMLR)
- 남극 조약 협의 당사국회의 권고문

옵서버

- 남극생물자원보존협의회(SCCAMLR)
- 남극과학위원회(SCAR)
- 국가남극프로그램운영자위원회(COMNAP)

기구

전문가그룹

- 남극/남빙양연합(ASOC)
- 국제자연보존연맹(IUCN)
- 국가남극관광협회(IAATO)
- 세계기상기구(WMO)
- 국제 수로기 구(IHO)
- 국제 해 사기 구(IMO)
- ■정부간 해양과학위원회(IOC)
- 유엔 환경계획(UNEP)

참고 3 우리나라 극지과학 인프라 현황

남극 세종과학기지

남극 장보고과학기지

■ 남극 진출의 교두보(지구온난화, 기후변화. 해양생태계 연구 중심)

● 준공일 : 1988년 2월 17일

위 치 : 남쉐틀랜드군도 킹조지섬 (남위 62도)

● 시설현황 : 건물 14개동 5,290㎡(제32차 월동연구대원 16명 상주)

■ 극지연구영역 확대(빙하, 빙저호, 심부빙하 시추 등 남극대륙기반 연구수행)

● 준공일 : 2014년 2월 12일

• 위 치 : 동남극 Victoria Land, Terra Nova Bay(남위 74도)

● 시설현황 : 건물 16개동 4,661㎡(제6차 월동연구대원 17명 상주)

북극 다산과학기지

쇄빙연구선「아라온」

■ 북극의 기후, 환경 연구의 거점기지

● 개소일 : 2002년 4월 29일

치 : 노르웨이령 스발바드군도 스 피츠베르겐 섬 니알슨(북위 78도)

● 시설현황 : 니알슨 기지촌 공용시설 216㎡(65평) 임대 사용(現 10개국 사용 중)

■ 남・북극 결빙해역에서의 연구수행 및 남극기지 물자보급

건조일: 2009년 11월(총사업비: 1,080억원)

● 제 원 : 총톤수 7,507톤, 전장 111.0m, 선폭 19.0m, 순항속도 12knots

● 승선인원 : 85명(선원 35명, 연구원 50명)

● 최대 운항거리 : 20,000마일(70일)(한국 -세종기지까지 무보급 항해 가능)

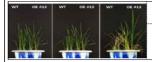
참고 4

극지연구 주요 성과

남극반도 대륙사면에서 '불타는 얼음'으로 불리는 가스하이드레이트층을 최초 발견 (국내 천연가스 연간소비량의 약 200배)

국내 최초 냉장화장품 '프로스틴'(Frostine) 출시('12)

남극 지의류 '라말리나 테레브라타'(Ramalina Terebrata)에서 비타민C보다 50배이상의 항산화 효과를 가진 '라말린' 추출해 기술이전, ㈜LG생활건강에서 제품 출시


북극해 거대빙상 세계 최초 규명('13)

260만년 전부터 1만년 전까지 제4 빙하기 시대에 동시베리아해에 거대한 빙상이 북극해 연안을 둘러싸고 있었음을 규명하여 북극 기후변화 패턴 이해에 기여

북극해빙 감소가 동아시아 지역 한파 및 폭설을 야기함을 세계 최초 규명('14)

북극해빙 감소로 성층권에 있는 북극 소용돌이가 약화되어 북극의 냉기가 중위도 지역까지 내려와 잦은 한파와 폭설을 발생시킴을 규명

남극 식물 유래 유전자 활용 환경 내성 작물(벼) 세계 최초 개발('15)

남극좀새풀 유래 저온내성유전자를 작물에 도입하여 냉해에 견딜 수 있는 벼 개발 (저온내성효과 검증), 남극 식물유래 유전자를 활용한 환경내성 작물 세계 최초 개발

남극 중앙해령 빙하기-간빙기 순환 증거 세계 최초 발견('15)

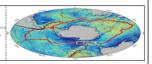
쇄빙연구선 아라온호를 활용한 현장 탐사를 통해 남극 중앙해령에서 빙하기-간빙기 순환 증거 세계최초 발견, 대기상태 변화가 지각 형성에 영향을 미친다는 사실 최초 규명

남극 갈색도둑갈매기 인지능력 세계 최초 규명('16)

세종기지 주변 서식하는 남극 갈색도둑갈매기 생태 연구를 통해 사람을 구분할 수 있는 인지 능력이 있음을 세계 최초로 규명(미국 CNN 등 해외언론 보도)

남극 빙붕 붕괴과정 세계 최초 규명('18)

남극의 빙붕(氷棚, Ice Shelf) 하부에 흐르는 물고랑의 영향으로 상부에 균열이 생기고 이로 인해 빙붕이 붕괴되는 과정을 규명해 향후 연안침수 예측모델 개발에 기여



세계 최초 남극 해양미생물 활용 혈액 동결보존제 개발('18)

남극 해양미생물인 '슈도알테로모나스 종(Pseudoalteromonas sp. Strain CY01)'에서 얼음 성장 억제물질을 발견하고, 이를 활용하여 혈액 동결보존제 개발 성공

신규 맨틀 남극바다에서 세계 최초 발견('19)

쇄빙연구선 아라온호를 이용하여 '호주-남극 중앙해령'에서 새로운 '맨틀'의 존재를 세계 최초로 발견하여 지구 맨틀 대류 패러다임 수정 불가피

적도 이상기후와 남극 동물플랑크톤의 행동연관성 세계 최초 규명('19)

적도, 저위도 지방의 이상기후 현상이 남극바다에 서식하는 동물플랑크톤의 생존 전략 변화에 영향을 미친다는 사실을 세계 최초 규명

남극 지의류 추출성분 활용 당뇨병 치료제 개발('19)

남극 지의류 '스테리오카울론 알피넘(Stereocaulon alpinum)' 종에서 추출한 성분 (Lobaric acid)으로 인슐린의 활성화를 도와주는 새로운 물질(Lobarin, Lobarstin) 개발

